Skip to content

Averaging Example

Import stream and epoc data into Python using read_block
Plot the average waveform around the epoc event using epoc_filter
Good for Evoked Potential detection


Import the tdt package and other python packages we care about.

# special call that tells notebook to keep matlplotlib figures open
%config InlineBackend.close_figures = False

# special call that tells notebook to show matlplotlib figures inline
%matplotlib inline

import matplotlib.pyplot as plt  # standard Python plotting library
import numpy as np  # fundamental package for scientific computing, handles arrays and math

# import the tdt library
import tdt

Importing the Data

This example uses our example data sets. To import your own data, replace BLOCK_PATH with the full path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your block, then Right-Click → Copy path to clipboard.

BLOCK_PATH = 'data/Algernon-180308-130351'
demo data ready

Set up the varibles for the data you want to extract. We will extract channel 3 from the LFP1 stream data store, created by the Neural Stream Processor gizmo, and use our PulseGen epoc event ('PC0/') as our stimulus onset.

REF_EPOC     = 'PC0/'
ARTIFACT     = np.inf       # optionally set an artifact rejection level
CHANNEL      = 3
TRANGE       = [-0.3, 0.8]  # window size [start time relative to epoc onset, window duration]

Now read the specified data from our block into a Python structure.

data = tdt.read_block(BLOCK_PATH, evtype=['epocs','scalars','streams'], channel=CHANNEL)
read from t=0s to t=61.23s

Use epoc_filter to extract data around our epoc event

Using the 't' parameter extracts data only from the time range around our epoc event. For stream events, the chunks of data are stored in a list.

data = tdt.epoc_filter(data, 'PC0/', t=TRANGE)

Optionally remove artifacts.

art1 = np.array([np.any(x>ARTIFACT) for x in data.streams[STREAM_STORE].filtered], dtype=bool)
art2 = np.array([np.any(x<-ARTIFACT) for x in data.streams[STREAM_STORE].filtered], dtype=bool)
good = np.logical_not(art1) & np.logical_not(art2)
data.streams[STREAM_STORE].filtered = [data.streams[STREAM_STORE].filtered[i] for i in range(len(good)) if good[i]]
num_artifacts = np.sum(np.logical_not(good))
if num_artifacts == len(art1):
    raise Exception('all waveforms rejected as artifacts')

Applying a time filter to a uniformly sampled signal means that the length of each segment could vary by one sample. Let's find the minimum length so we can trim the excess off before calculating the mean.

min_length = np.min([len(x) for x in data.streams[STREAM_STORE].filtered])
data.streams[STREAM_STORE].filtered = [x[:min_length] for x in data.streams[STREAM_STORE].filtered]

Find the average signal.

all_signals = np.vstack(data.streams[STREAM_STORE].filtered)
mean_signal = np.mean(all_signals, axis=0)
std_signal = np.std(all_signals, axis=0)

Ready to plot

Create the time vector.

ts = TRANGE[0] + np.arange(0, min_length) / data.streams[STREAM_STORE].fs

Plot all the signals as gray.

fig, ax1 = plt.subplots(1, 1, figsize=(8,5))
ax1.plot(ts, all_signals.T, color=(.85,.85,.85), linewidth=0.5)


Plot vertical line at time=0.

ax1.plot([0, 0], [np.min(all_signals), np.max(all_signals)], color='r', linewidth=3)


Plot the average signal.

ax1.plot(ts, mean_signal, color='b', linewidth=3)


Plot the standard deviation bands.

ax1.plot(ts, mean_signal + std_signal, 'b--', ts, mean_signal - std_signal, 'b--')


Finish up the plot

ax1.set_xlabel('Time, s',fontsize=12)
ax1.set_title('{0} {1} Trials ({2} Artifacts Removed)'.format(