
Pynapse Manual for v95 Synapse
Python Programming in Synapse

Updated 2021-03-24

© 2016-2021 Tucker-Davis Technologies, Inc. (TDT). All rights reserved.

Tucker-Davis Technologies
11930 Research Circle
Alachua, FL 32615 USA
Phone: +1.386.462.9622
Fax: +1.386.462.5365

Notices

The information contained in this document is provided "as is," and is subject to being changed,
without notice. TDT shall not be liable for errors or damages in connection with the furnishing, use, or
performance of this document or of any information contained herein.

The latest versions of TDT documents are always online at https://www.tdt.com/docs/

Pynapse Manual | 2

https://www.tdt.com/docs/

Table of Contents

Overview

5Benefits of Pynapse

6Pynapse Gizmo

6Event Loop

7Python State Machine

7Main Assets of Pynapse Gizmo

8Common Applications

Requirements

9Installing Python

Quick Start Example

15Using the Always State

16Using Multiple States

Inputs

25Slot Methods for Responding to Input States

26Duration Testing

28Epoc Storage

28Buffering

29Methods

Outputs

41Buffering

41Parameter Outputs

41Output Methods

46Parameter Methods

States

48Slot Methods for Responding to State Changes

49State Timeouts

50Methods

Controls

56Slot Methods for Responding to Control Changes

57Methods

Timers

60Slot Methods for Responding to Timer Ticks

61Methods

Globals

65Methods

Table of Contents | 3

Synapse Control

68Slot Methods for Responding to Synapse Mode Changes

69SynapseAPI

Code Editor and Parser

72Code Tree

75Organizing Your Code

76Testing

Run-Time and Debugging

77Debug View

81Debugging

Tips and Tricks

83Synchronizing Events

84Delays

85Runtime Plots

Installing Standard Python

88Environments

Table of Contents | 4

Overview

Pynapse is a gizmo for tightly integrating Python coding into

your Synapse experiment.

Many users write external code in Python (or Matlab) that runs

alongside their Synapse experiments. These programs are

used for overall experiment control, stimulus delivery,

behavioral control, and online analysis - things that are either

novel paradigms that don't exist in the current gizmo set or

can't easily be programmed to run directly on the real-time

hardware.

There are several challenges faced by these users and Pynapse is designed to address these

issues with an intuitive and powerful interface.

Benefits of Pynapse

Pynapse is more than a great embedded Python editor within Synapse. You get:

Great Python editor with all the bells and whistles (highlighting, code completion, and

more)

Easy-to-learn, structured programming framework

Fully automatic Synapse synchronization. Your Python code is saved and versioned with

your experiment

Powerful hardware and software seamlessly integrated

Runtime live code editing and monitoring

Automatic code flowcharting

•

•

•

•

•

•

Overview | 5

Pynapse Gizmo

Pynapse Gizmo Block Diagram

All of this is built into the Pynapse gizmo. Just install Python and drop the Pynapse gizmo into

your Synapse experiment.

The circuit that runs on the real-time hardware has all the features that anyone writing custom

Python code to interact with the hardware. Pynapse runs an optimized polling loop that

synchronizes Python to Synapse, faster than existing methods. The State Machine architecture

in Pynapse yields tight programs that are easy to read and easy to debug.

Event Loop

A tight polling loop is continuously running and monitoring hardware events defined in the

experiment.

Hardware event is detected by the Pynapse event loop.

Call is made into Python to execute a method written by the user

Call is logged and timestamped

Events are sent back to the hardware

All of this happens in milliseconds.

1.

2.

3.

4.

Overview | 6

Python State Machine

The Python code can be organized into 'States'. Pynapse keeps track of which state it is in, and

hardware events will only trigger Python calls defined within that state. State changes are also

controlled by the Python code, and automatically timestamped and stored with the rest of your

data for easy analysis.

Main Assets of Pynapse Gizmo

Pynapse has six fundamental assets built into it that are accessible in the Python code.

Asset Description

Inputs Connect to external hardware and trigger events while accessing signals in Python

Outputs Drive logic and waveform outputs under Python control

Timers Drive timing of Python program or an experimental event

Controls Provide user control with standard User Interface elements

Globals Share global variables across your Python code and sync to edit runtime user controls

States Switch states, set timeouts, or capture state change events

Overview | 7

Common Applications

Program Control

Start/stop Synapse or other programs based on conditional triggers

Run Synapse for a set duration

Behavioral Control

Implement complex behavioral paradigms over trials that control:

Cues

Waiting periods

Input decisions

Reward output

and more

Signal Analysis and Display

Collect signals in a triggered buffer or through the API

Perform calculations, such as:

Presentation averaging, spike counting, or FFT

Plot results using Python plotting libraries (such as Matplotlib)

Stimulus Presentation

Generate simple or complex stimuli to present during triggered conditions using Pynapse

output control or built-in buffers

•

•

•

◦

◦

◦

◦

◦

•

•

◦

•

•

Overview | 8

Requirements

Installing Python

After installing TDT drivers and Synapse, you'll need to install Python on the computer that is

running Synapse. Pynapse works with Python 3.x.

There are two recommended paths for installing Python:

Anaconda Python: Anaconda includes many scientific packages pre-installed for you and

is the recommended installation. It is easier to create and manage environments in

Anaconda as well.

Standard Python: If you just want to run Python inside Synapse for behavioral control,

install standard Python.

This document covers the Anaconda installation method. For the standard Python installation

method click here.

Anaconda Python Installation

Anaconda installs from https://docs.anaconda.com/anaconda/install/windows/

During installation:

Select 'Install for All Users'

Change the installation directory to C:\Anaconda3

•

•

We recommend installing 64-bit Python on 64-bit Windows 10. This is the Python 3.x86 "64-Bit Graphical Installer"

option.

On 32-bit machines, install the Python 3.x "32-Bit Graphical Installer".

Note

1.

a.

b.

Requirements | 9

https://docs.anaconda.com/anaconda/install/windows/

In Synapse, add a Python Coding Gizmo from the Specialized gizmo list.

Example Installer 1

Example Installer 2

2.

Requirements | 10

In Pynapse General Tab, set the Python Install Directory to your installed Python, which in

this case is:

C:\Anaconda3\python.exe

In Synapse, go to Menu → Preferences. The Python Directory will have updated to the path

you just used. Select 'Lock' so this path is the default path whenever you use a Pynapse

gizmo.

3.

4.

Requirements | 11

Environments

Pynapse also works in Python virtual environments. A virtual environment is a self-contained

directory tree that contains a Python installation for a particular version of Python, plus a

number of additional packages. The default environment is called 'base'.

Environments are simply directories on disk, so it is easy to delete/recreate environments if

they get in a bad state. It is more difficult to do this with the 'base' environment. It is therefore

recommended that you create a specific environment for Pynapse to use.

Environments are created in Anaconda using an Anaconda Prompt. Note that you can specify

the Python version for each environment as well.

Here's how to create an environment to use in Pynapse:

In Windows, go to Start → "Anaconda Prompt (Anaconda3)"

Type this to create a Python 3.7 environment called 'pynapse':

conda create --name pynapse python=3.7

The fresh environment is mostly empty, so you'll want to add common packages. From the

Anaconda Prompt, first type this to activate the new environment:

conda activate pynapse

Then install some of the libraries we'll want to use. For example, install the tdt package for

data analysis:

pip install tdt

To make sure auto-completion on the Pynapse editor works, you must downgrade one of the

installed packages:

1.

2.

If you want to add runtime plotting to Pynapse, create the environment with this:

conda create --name pynapse python=3.7 matplotlib ipykernel=4.10.0

Tip

3.

4.

Anytime you want to add packages to an environment, do it through the Anaconda Prompt and activate your

environment first.

Important

5.

Requirements | 12

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands
https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-python/getting-started/

pip install jedi==0.17.0

Back in Synapse, the Pynapse General Tab has a drop down that shows the environments

created in Anaconda, so you can choose the environment directly in the GUI.

6.

Requirements | 13

Quick Start Example

In this example we want to turn a light on with the capture of a button press, and then turn the

light off when the button is released. We will have a single input for our button ('Button') and a

single output for the light ('Light'). If you were to code this in Python, it might look something

like this:

In Pynapse, instead of using a while loop, we define things called States that can call upon

specified methods that we call Slot Methods and Asset Methods when certain hardware

events occur. Pynapse knows the current State and is constantly polling the inputs directly

from the hardware in a tight loop. When a hardware event occurs that has a matching Slot

Method in the current State, that Slot Method gets triggered. The result of this is simplicity in

how your state machine is coded - instead of using embedded while loops and conditional

statements, you can simply use States and integrated Slot Methods and Asset Methods to

issue commands and move from one state to another depending on what events have

occurred on the hardware or outputs of code calculations.

import time

while True:

 print('WaitState entered')

 # turn off output
 Light.off()

 # wait until button is pressed
 while Button.false():
 time.sleep(.01)

 print('OnState entered')

 # turn on output
 Light.on()

 # wait until button is false
 while Button.true():
 time.sleep(.01)

 # go back to beginning

Quick Start Example | 14

Here is a table of important definitions of terms you will see throughout this example and in

the Pynapse manual:

For the quick start example, we are going to demonstrate how to perform our Light on/off task

in two ways: the first is going to use the initial 'Always' State in Pynapse; the second is going to

show you how to use multiple States to switch between active pieces of code and perform

certain tasks based on captured hardware events.

Using the Always State

The special State called 'Always' runs on every polling loop regardless of what the Pynapse

active State is. In our example, we can take advantage of this special State by just focusing on

writing code that triggers based on hardware events and not worrying about the Pynapse State

machine. Since the 'Always' State is present in the Pynapse Source by default, all we write are

Sloth Methods and Asset Methods:

A high-level translation of this code would read as follows:

Term Definition

state Specially defined Python class that has #StateId = ? at the end of the class definition

method Any function defined inside a class using the def keyword

slot method Special method that Pynapse calls in response to events. Slot method names always begin with a

s_ prefix

asset Special Pynapse classes that interact with inputs, outputs, states, controls, globals, and timers.

Assets always begins with a p_ prefix. For reference, the list of all slot methods that these assets

can trigger, and methods you can use to interact with the assets in Python, can be found in the

Assets Reference section of this manual.

function General name used for any function defined outside of a class with the def keyword

Pynapse Source

class Always: #StateID = 0

 def s_Button_rise():
 p_Output.Light.turnOn()
 print('Light is on!')

 def s_Button_fall():
 p_Output.Light.turnOff()
 print('Light is off!')

Quick Start Example | 15

In the Always State, if the 'Button' input true (button is pressed), then turn the 'Light' output on

and print "Light is on!"; if the 'Button' input is false (button is released), then turn the 'Light'

output off and print "Light is off!".

Here is the same translation using Pynapse terminology:

As mentioned, Pynapse is constantly polling the hardware for events that trigger methods

inside of the current active State (Always). In this case, we've defined two Slot Methods

's_Button_rise' and 's_Button_fall' which are part of the Input Assets. The 's_Button_rise' Slot

Method triggers when the button is pressed (Button input changes to true) and the

's_Button_fall' triggers when the button is released (Button input changes from true to false).

When the button press is detected, Pynapse internally executes the Output Pynapse Asset

Method (Light.turnOn), which toggles the output logic signal from low to high. When the button

is released, the Light.turnOff Asset Method is executed.

After we test this code (right-click 'Main' → 'Test') and go to run-time, you will see the Light

output toggle on and off with the pressing or release of the Button input.

Using Multiple States

This example was entirely coded in the Always State. Now, we'll take advantage of Pynapse's

built-in State Machine. Using multiple Pynapse States has major advantages at runtime,

especially as your paradigm increases in complexity. You get a visual indicator of what State

you are in for behavior monitoring and the State changes are timestamped and recorded in the

data tank synchronized with the rest of your data. There are some other debugging features

you get at run-time as well, discussed in more detail in Run-Time and Debugging.

If the button was released first (e.g you were pressing down the button as you went to run-time then let go) the

's_Button_fall' Slot Method would trigger first. These Slot Methods are independent functions that are beholden

only to detected hardware events - they do not influence each other.

Note

All Pynapse Slot Methods start with s_ and all Pynapse Assets start with p_ . Remembering these two prefixes

makes it easy to use code completion inside the Pynapse Code Editor to see all the available Slots and Assets

right inside the editor and quickly find what you are looking for.

Important

Quick Start Example | 16

Here we define three states: Always, WaitState and LightOn. When moving to run-time

(Standby, Preview, or Record mode) Pynapse enters the Always State and the 's_Mode_recprev'

Slot Method is triggered. This is a Synapse Control Slot Method that detects when Synapse

has changed mode from Idle to Preview or Record. Once 's_Mode_recprev' is triggered the

'p_State.switch(WaitState)' Asset Method is executed. This key asset tells Pynapse to move to

a new State.

Next, Pynapse enters WaitState and immediately runs a specially named Slot Method called

's_State_Enter'. In this example, the s_State_Enter Slot Method turns off the Output (Light) by

executing the 'p_Output.Light.turnOff' Output Asset and prints our familiar string.

Now, just like in the first example that only used the Always State, we monitor hardware events

and wait for the Input (Button) to become true, wherein another switch Asset Method is

executed and we move to our third State (LightOn).

Finally, we enter the LightOn State. As we enter, the 's_State_enter' Slot Method is triggered and

the 'p_Output.Light.turnOn' Asset Method is executed. As you can see, coordinating output

events to State changes is a simple way to write conditional events in the Pynapse State

Machine. Similarly to the WaitState, Pynapse will continue polling until the 's_Button_fall' Slot

Pynapse Source

class Always: #StateID = 0

 def s_Mode_recprev():
 p_State.switch(WaitState)

While WaitState is our active State a release of the button will not do anything since there are no Slot Methods in

WaitState that detect falling-edge hardware events.

Note

class WaitState: #StateID = ?

 def s_State_enter():
 p_Output.Light.turnOff()
 print('Light is off!')

 def s_Button_rise():
 p_State.switch(LightOn)

Quick Start Example | 17

Method is triggered by a button release, wherein we switch back to WaitState and the Output

(Light) is turned off.

class LightOn: #StateID = ?

 def s_State_enter():
 p_Output.Light.turnOn()
 print('Light is on!')

 def s_Button_fall():
 p_State.switch(WaitState)

Notice there were no while loops used in these examples. In Pynapse you should almost never write while

loops. Its polling loop handles this for you. All of your methods should return immediately so the polling loop can

continue executing.

Important

Quick Start Example | 18

Inputs

You can have up to 8 inputs into the Pynapse gizmo. These inputs can be digital signals (logic

TTL) or analog signals (float or integer) that go through a Logic Conversion, such as

thresholding.

Input Processor

Set the Name of the input to something that makes sense for your experiment, e.g. 'NosePoke'.

This will be used throughout the Python code.

Inputs | 19

You can optionally save epoch timestamp events for each input. An integer code for the event

type is stored with the timestamp. See Epoc Storage below for more information.

Inputs | 20

Number input signals pass through a logic conversion so they can trigger on/off events in Pynapse.

Smoothing is a low pass filter that removes jitter on the analog signal before logic conversion. This helps avoid a

situation where the signal is quickly bouncing around the test threshold.

By default, the Test is Above, which is a simple threshold detection method to convert the number signal input

into a logic signal when it goes beyond the Thresh-A value.

Epoc events are triggered on the 'rise' event of all of these tests. If the test can be true for more than 2 samples

('Strobe') then a timestamp for the 'fall' event is also stored. See Epoc Storage below for full epoc code

information.

Logic Conversion for Number Signals

Inputs | 21

Test Type Description Duration

Above Signal is above Thresh-A Strobe

Below Signal is below Thresh-A Strobe

Between Signal is between Thresh-A and Thresh-B Strobe

Outside Signal is outside Thresh-A and Thresh-B Strobe

Rising Signal is increasing in value Strobe

Falling Signal is decreasing in value Strobe

Peak Signal forms a local peak Trigger

Valley Signal forms a local valley Trigger

Tip Signal forms a local peak or valley Trigger

Rise Thru Signal rises through Thresh-A from below Trigger

Fall Thru Signal falls through Thresh-A from above Trigger

Pass Thru Signal passes through Thresh-A from above or below Trigger

Inputs | 22

Inputs Tab - Logic Options

Inputs | 23

Invert and Debounce are typically used if the input is coming directly from a digital input on the

RZ processor. Debounce is the amount of time the input has to settle before its new state is

used. This is useful for lever presses or hardware button presses which can 'bounce' on

contact and trigger several rapid artificial events before making solid contact.

Inputs Tab - Number Options

Inputs | 24

Slot Methods for Responding to Input States

These input slots capture status information about the inputs. They are available as method

definitions inside Pynapse states for each input. Write a method with this name to react to the

corresponding event.

Move through behavioral states based on status of MyInput

Slot name Operation Event

s_Input1_true() Status input is true

s_Input1_rise() Status input changed to true

s_Input1_fall() Status input changed to false

s_Input1_active() Duration input passed the 'Time to Active' duration test (see Duration Testing)

s_Input1_pass() Duration input passed the 'Time to Pass' duration test (see Duration Testing)

s_Input1_fail() Duration input failed the 'Time to Pass' duration test, after passing 'Time to Active' (see

Duration Testing)

s_Input1_done() Buffer input buffer is full and ready to be read (see Buffering)

'Input1' is default name of the first input. The name of each slot method gets replaced with the name of your

actual input, so if you name the input 'NosePoke' then s_NosePoke_rise() is an available slot

Note

Example

class PreTrial:
 def s_MyInput_rise():
 p_State.switch(StartTrial)

class StartTrial: # StateID = ?
 def s_MyInput_active():
 p_State.switch(ActiveState)

 def s_MyInput_fall():
 p_State.switch(PreTrial)

class ActiveState: # StateID = ?
 def s_MyInput_pass():
 p_State.switch(PassState)

 def s_MyInput_fail():
 p_State.switch(FailState)

Inputs | 25

Duration Testing

The inputs can use built-in duration testing. In this example, the button has to be pressed for

600ms to get to the 'Active' state, and another 400ms for it to 'Pass'. This timing happens on

the hardware and the active , pass and fail slots are triggered in Pynapse.

No Trial

Time to Active not reached by Input.

No trial is initiated.

Inputs | 26

Fail

Time to Active reached by Input, so 'Active' trigger fires.

Time to Pass was not reached by Input, so the 'Fail' trigger fires when Input is released.

Pass

Time to Active reached by Input, so 'Active' trigger fires.

Time to Pass also reached by Input, so 'Pass' trigger fires.

Inputs | 27

Epoc Storage

Epoc events are triggered on the 'rise' event of the input and a timestamp and value of 3 is

stored in the data tank. If the input is true for more than 2 samples then the 'fall' event is also

timestamped and stored, with a value of 4.

The full state of the input, including duration test results, is captured in the integer code:

Example values of the epoc event:

Buffering

Buffering lets you save a small snippet of data in hardware memory and read it into Pynapse.

When the input switches to true ('rise' trigger) the buffer is captured. When buffering is

finished it fires the done trigger.

You can connect the buffer signal source can be any single channel signal in your experiment,

including the input signal. Even though the inputs are all converted to digital signals for logic

tests, you can still trigger Pynapse to buffer up the original analog signal and then read that

into Python for online analysis. For example, you can do a threshold detection on a signal and

save the snippet around the threshold crossing, and do something with this in Pynapse.

b6 b5 b4 b3 b2 b1 b0

Done Fail Pass Active Fall Rise True

Event Value Binary Representation

Rise 3 0x0000011

Fall 4 0x0000100

Active 9 0x0001001

Pass 17 0x0010001

Fail 36 0x0100100

Done 64 0x1000000

Inputs | 28

Display a 1000 sample buffer when triggered.

Methods

All input methods have the form p_Input.{INPUT_NAME}.{METHOD} . Type p_ in the Pynapse

Code Editor and let the code completion do the work for you.

Buffer operations

Read a triggered snippet of memory from the hardware.

setBufferSize

Change the number of samples to store in the buffer.

Example

%matplotlib

import matplotlib.pyplot as plt

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer and plot
 p_Input.MyInput2.setBufferSize(1000)
 p_Input.MyInput2.armBuffer()
 plt.plot()

 def s_MyInput_done():
 # get buffer
 arr = p_Input.MyInput2.getBuffer()

 # plot buffer contents
 plt.plot(arr)

p_Input.MyInput.setBufferSize(npts)

Inputs Type Description

npts integer Number of samples to buffer

This call must always be made if using a buffer.

Important

Inputs | 29

Initialize the buffer size before the recording starts.

armBuffer

Let the buffer accept a trigger and fill with new data.

Arm the buffer when the experiment first runs.

disarmBuffer

Stop the buffer from loading again. Use this to avoid overwriting buffer data before you've had

a chance to read it with getBuffer .

Example

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer
 p_Input.MyInput.setBufferSize(1000)
 p_Input.MyInput.armBuffer()

p_Input.MyInput.armBuffer()

This call must always be made if using a buffer.

Important

Example

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer
 p_Input.MyInput.setBufferSize(1000)
 p_Input.MyInput.armBuffer()

p_Input.MyInput.disarmBuffer()

Inputs | 30

Prevent the hardware buffer from triggering/ loading new data while you read it.

getBuffer

Capture the MyInput buffer when the 'done' trigger fires.

Example

p_Input.MyInput.disarmBuffer()
arr = p_Input.MyInput.getBuffer()
p_Input.MyInput.armBuffer()

arr = p_Input.MyInput.getBuffer(npts=0, offset=0)

Inputs Type Description

npts integer Number of samples to read (0=all)

offset integer Starting index in buffer to read from (0-based)

Returns

array number Buffer contents as python list

Example

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer
 p_Input.MyInput.setBufferSize(1000)
 p_Input.MyInput.armBuffer()

 def s_MyInput_done():
 # get buffer
 arr = p_Input.MyInput.getBuffer()
 print(arr)

Inputs | 31

Duration Settings

setTimingTest

Override the duration test settings applied to the input at runtime.

Modify the timing tests based on performance.

Manual Control

Manual turn inputs on, off, or pulse during runtime. Useful for debugging.

manualOn

Manually turn on the input.

Turn on the input when entering a state.

p_Input.MyInput.setTimingTest(acttime_sec, passtime_sec)

Inputs Type Description

acttime_sec float Time to Active, in seconds

passtime_sec float Time to Pass, in seconds

Example

def s_State_enter():
 # if more than 5 successful trials, increase the time to pass by 50 ms.
 if p_Global.success.read() > 5:
 p_Global.pass_time.inc(delta=0.05)
 p_Input.MyInput.setTimingTest(p_Global.act_time.read(), p_Global.pass_time.read())

p_Input.MyInput.manualPulse()

Example

def s_State_enter():
 p_Input.MyInput.manualOn()

Inputs | 32

manualOff

Manually turn off the input.

Turn off the input when exiting a state.

manualPulse

Manually pulse the input.

Pulse the input when entering a state.

Number Conversion Settings

Override the feature settings applied to the input signal for logic conversion at runtime.

setFeatureThresholds

Modify the threshold settings for the logic conversion.

p_Input.MyInput.manualPulse()

Example

def s_State_exit():
 p_Input.MyInput.manualOff()

p_Input.MyInput.manualPulse()

Example

def s_State_enter():
 p_Input.MyInput.manualPulse()

p_Input.MyInput.setFeatureThresholds(thresh_A, thresh_B)

Inputs Type Description

thresh_A float Threshold (in V) for the Thresh-A parameter

thresh_B float Threshold (in V) for the Thresh-B parameter

Inputs | 33

Modify the lever force requirement based on performance.

setScale

Change the scale factor applied to the signal before it goes through the logic conversion.

Modify the scale factor based on a run-time Control.

setSmoothing

Change the smoothing filter applied to the input signal before it goes through the logic

conversion.

Example

def s_State_enter():
 # if more than 5 successful trials, increase the force required by 0.05
 if p_Global.success.read() > 5:
 p_Global.thresh_A.inc(delta=0.05)
 p_Input.MyInput.setFeatureThresholds(p_Global.thresh_A.read(),
p_Global.thresh_B.read())

p_Input.MyInput.setScale(scalefactor)

Inputs Type Description

scalefactor float Scale factor applied to signal before logic conversion

Example

class Always: #StateID = 0

 # set input scale factor to value of the SmoothCtrl slider at runtime
 def s_SmoothCtrl_change(value):
 p_Input.MyInput.setScale(value)

p_Input.MyInput.setSmoothing(acttime_sec, passtime_sec)

Inputs Type Description

tau_sec float Time constant of the low-pass smoothing filter, in seconds (0=off)

Inputs | 34

Modify the smoothing filter based on a run-time Control.

Status

Get information on the current state of the input.

isOn

Returns true if the input is currently true.

When entering a state, check if an input is already true.

isOff

Returns true if the input is currently false.

Example

class Always: #StateID = 0

 # set smoothing 'tau' to value of the TauCtrl slider at runtime
 def s_TauCtrl_change(value):
 p_Input.MyInput.setSmoothing(value)

p_Input.MyInput.isOn()

Example

def s_state_enter():
 if p_Input.MyInput.isOn():
 print('MyInput is on')
 else:
 print('MyInput is off')

p_Input.MyInput.isOff()

Inputs | 35

When entering a state, check the status of the input.

getRawInput

Read the current value of an input. If it is a number, the raw input into the Pynapse gizmo

before any feature detection.

When a threshold is crossed, check the current value of the signal.

getStatusBits

Read the current state of an input as a bitwise integer value. Bit order is:

Done | Fail | Pass | Active | Fall | Rise | True

Used by the Pynapse polling loop.

Example

def s_state_enter():
 if p_Input.MyInput.isOff():
 print('MyInput is off')
 else:
 print('MyInput is on')

p_Input.MyInput.getRawInput()

Example

def s_MyInput_rise():
 print(p_Input.MyInput.getRawInput())

p_Input.MyInput.getStatusBits()

Inputs | 36

Outputs

You can have up to 8 outputs from the Pynapse gizmo. The outputs can be logic signals that

are turned on/off, or triggered for a single sample, or strobed high for a fixed duration. You can

also load a custom analog waveform into a buffer and trigger Pynapse to play it out.

Set the Name of the output to something that makes sense for your experiment, e.g. 'Reward'.

This will be used throughout the Python code and to link to other gizmos.

You can optionally save epoch timestamp events for each output. A timestamp is saved when

the output turns on. If the output is high for more than 2 samples then the offset is stored as

well.

Triggered - output stays high for a fixed amount of time (controlled by hardware). If Duration is

0, this is a single sample.

Strobed - output turns on when the turnOn() method is called and turns off when the turnOff()

is called.

See Synchronizing Events for information on the Sync to State Change option.

Outputs | 37

Outputs Tab - Logic Options

Outputs | 38

Outputs Tab - Float Options

Outputs | 39

Outputs Tab - Buffer Options

In the Buffer Options, there is an optional low pass filter (Image Filter) to remove aliased

signals. If unsure, set this to ~⅓ of the output Sample Freq.

Outputs | 40

Buffering

Buffering lets you write a small waveform to hardware memory and trigger it for presentation.

This allows you to create fully custom stimuli on the fly, either pre-loaded or adaptive in

response to behavioral events.

Parameter Outputs

Pynapse has a set of Parameter outputs which can control all parameters that define a

stimulation gizmo. For example, control the waveform parameters of an Audio Stimulation

gizmo or an Electrical Stim Driver gizmo directly from Pynapse, just like you would use a

Parameter Sequencer gizmo for. Create the parameters on the fly based on subject feedback,

or play from a python-generated list. See Parameter Methods below.

See Synchronizing Events for information on the Sync to State Change option.

See Using Parameters for more general information on parameters.

Output Methods

All output methods have the form p_Output.{OUTPUT_NAME}.{METHOD} . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you. 'Output1' is the default

name of the first output. The name of each method gets replaced with the name of your actual

output, so if you name the output 'Reward' then p_Output.Reward.fire() is an available

method.

Manual Control

Manual turn outputs on, off, or fires a pulse waveform during runtime. Useful for stimulus/

reward presentation.

Outputs | 41

https://www.tdt.com/docs/synapse/gizmos/audio-stimulation/
https://www.tdt.com/docs/synapse/gizmos/audio-stimulation/
https://www.tdt.com/docs/synapse/gizmos/electrical-stim-driver/
https://www.tdt.com/docs/synapse/gizmos/parameter-sequencer/
https://www.tdt.com/docs/synapse/gizmos/using-parameters/

fire

Quickly pulse the output. If Duration is non-zero, the output will stay high for that set duration.

Set Duration to zero to use this output to trigger other gizmos, e.g. trigger an Audio Stimulation

gizmo. If Output Type is Buffer, this will play the output buffer one time.

Trigger an output when the input goes high.

turnOn

Turn the output on indefinitely. If the output is a buffer, it will continuously loop until turned off

Link an input status to an output.

p_Output.MyOutput.fire()

Example

class Always: #StateID = 0

 def s_MyInput_pass():
 p_Output.MyOutput.fire()

p_Output.MyOutput.turnOn()

Example

class Always: #StateID = 0

 def s_MyInput_rise():
 p_Output.MyOutput.turnOn()

 def s_MyInput_fall():
 p_Output.MyOutput.turnOff()

Outputs | 42

turnOff

Turn the output off.

Link an input status to an output.

Duration Settings

setPulseShape

Override the output Duration (if Control Mode is set to Triggered) and the Output Value

settings (if Output Type is set to Float or Integer) at runtime.

Modify the pulse shape and output value based on performance.

p_Output.MyOutput.turnOff()

Example

class Always: #StateID = 0

 def s_MyInput_rise():
 p_Output.MyOutput.turnOn()

 def s_MyInput_fall():
 p_Output.MyOutput.turnOff()

p_Output.MyOutput.setPulseShape(dur_sec, outval=None)

Inputs Type Description

dur_sec float Duration of the output pulse when triggered with fire , in seconds

outval float or integer Output value when true

Example

def s_State_enter():
 # if more than 5 successful trials, decrease the output pulse time by 50 ms and output
value by 1.
 if p_Global.success.read() > 5:
 p_Global.pulse_dur.dec(delta=0.05)
 p_Global.output_val.dec(delta=1)
 p_Output.MyOutput.setPulseShape(p_Global.pulse_dur.read(), p_Global.output_val.read())

Outputs | 43

Buffer operations

Load a list of values into a memory buffer on the hardware and trigger playback.

setBuffer

Loads a python list or NumPy array into an output buffer. Call fire to play the output buffer

once. Call turnOn to play buffer on a loop until calling turnOff . Supports up to 100,000

samples.

Load an output buffer with 1,000 random numbers before the recording starts, and trigger it when MyInput goes

true.

Status

Get information on the current state of the output.

p_Output.MyOutput.setBuffer(wave)

Inputs Type Description

wave list List of numbers to load into output buffer

Example

import numpy as np

class Always: #StateID = 0

 def s_Mode_standby():
 import random
 p_Output.MyOutput.setBuffer(np.random.random(1000).tolist())

 def s_MyInput_rise():
 p_Output.MyOutput.fire()

Outputs | 44

isOn

Returns true if the output is currently true.

When entering a state, check if an output is already true.

isOff

Returns true if the output is currently false.

When entering a state, check the status of the output.

p_Output.MyOutput.isOn()

Example

def s_state_enter():
 if p_Output.MyOutput.isOn():
 print('MyOutput is on')
 else:
 print('MyOutput is off')

p_Output.MyOutput.isOff()

Example

def s_state_enter():
 if p_Output.MyOutput.isOff():
 print('MyOutput is off')
 else:
 print('MyOutput is on')

Outputs | 45

Parameter Methods

All parameter methods have the form p_Param.{PARAMETER_NAME}_write . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you. 'Par1' is the default

name of the first parameter. The name of each write method gets replaced with the name of

your actual parameter, so if the parameter is called 'Freq' then p_Param.Freq_write(val) is an

available method.

Par1_write

Write a new value for this parameter.

Modify the wave frequency for an Audio Stimulation gizmo when a state changes.

List_write

Write all the parameters at once using a list.

p_Param.Par1_write(val)

Inputs Type Description

val float Floating point value to send to this parameter output

Example

class PrepStim: #StateID = 0
 def s_State_enter():
 # get next stim ready
 wave_freq = 1000
 p_Param.p_Param.WaveFreq_write(wave_freq)

p_Param.List_write(vlist)

Inputs Type Description

vlist list List of floating point numbers to send to all parameter outputs

Outputs | 46

Prepare a list of stimulation parameters for an Audio Stimulation gizmo when a state changes.

Example

class PrepStim: #StateID = 0
 def s_State_enter():
 # get next stim ready
 pulse_count = 3
 pulse_period = 100
 wave_freq = 1000
 p_Param.List_write([pulse_count, pulse_period, wave_freq)

Outputs | 47

States

Pynapse has an internal state machine that logs all events and keeps track of the current state.

New triggers coming in are filtered through this state machine, so that only the slot methods

associated with the current state can run.

There is a special 'Always' state - slot methods in the Always state can trigger on any polling

loop. This is a useful state to add user mode controls (start/pause/stop).

States are 'classes' in the Python code that have the special comment #StateID = ? at the

end of the class definition. The number defined here is the id number associated with this

state. This value will be timestamped and stored with the data in the data tank. If the parser

finds a ? , it will automatically assign a number for you. Otherwise enter an integer to lock the

StateID in place, for example #StateID = 555 .

See Working with StateIDs for more information.

Slot Methods for Responding to State Changes

These state slots capture state machine changes. They are available as method definitions

inside Pynapse states, including the Always state. Write a method with this name to react to

the corresponding event.

Slot name Event

s_State_change Triggers on any state change

s_State_enter Triggers once when the state begins

s_State_exit Triggers once when the state ends

s_State_timeout Triggers when the state timeout is reached

States | 48

Turn on an output only while in a particular state.

In this example, use s_State_change() to track order of state execution. Suppose there are many states that exit

to TargetState. If the state that exited to TargetState is TargetOldState, we want to do something.

State Timeouts

The Pynapse state machine has a built-in Timer that is used as a timeout within the current

state that moves to another state if it fires. Timeouts are usually set in the s_State_enter() slot

method but can be set anywhere in the State. Timeouts can also be canceled.

Example

class StartTrial: # StateID = ?
 # turn on MyOutput when entering state
 def s_State_enter():
 p_Output.MyOutput.turnOn()

 # when MyInput passes 'Time to Active', switch to ActiveState
 def s_MyInput_active():
 p_State.switch(ActiveState)

 # turn off MyOutput when exiting state
 def s_State_exit():
 p_Output.MyOutput.turnOff()

class ActiveState: # StateID = ?
 # when MyInput passes 'Time to Pass', switch to PassState
 def s_MyInput_pass():
 p_State.switch('PassState')

def s_MyInput1_fail():
 p_State.switch(FailState)

class Always: # StateID = 0
 def s_State_change(newstateidx, oldstateidx):
 print('new state', newstateidx, 'old state', oldstateidx)
 if newstateidx == TargetState and oldstateidx == TargetOldState:
 print('do something')

States | 49

If the user fails to press a button (MyInput) within five seconds, we want to move to a NoTrial state and wait there

for ten seconds before starting a new trial.

Methods

All state methods have the form p_State.{METHOD} . Type p_ in the Pynapse Code Editor and

let the code completion do the work for you.

State Control

switch

Tell Pynapse to move to a new state. All states are python 'classes'. The input to switch can

be either the class or the string class name you want to switch to. See the example below

Example

class StartTrial: # StateID = ?

 # if no input is received after 5 seconds, switch to NoTrial state
def s_State_enter():

 p_State.setTimeout(5, NoTrial)

 def s_MyInput_rise():
 p_State.switch(TrialState)

class NoTrial: # StateID = ?
 # wait 10 seconds, return to StartTrial
 def s_State_enter():
 p_State.setTimeout(10, StartTrial)

class TrialState: # StateID = ?
 # turn on an output
 def s_State_enter():
 p_Output.MyOutput.turnOn()

p_State.switch(newstate)

Inputs Type Description

newstate class or string Name of new class to switch to

States | 50

Switch between states when MyInput goes high.

setTimeout

Switch to a default state after a certain period of time.

The function that contains the switch command does not exit immediately after switching the internal state.

This can have unintended consequences, particularly if you are using the Sync to State Change option for outputs

or timers. Best practice is to use the switch command last, right before the function exits.

See Synchronizing Events for information.

Note

Example

class StartTrial: # StateID = ?

 def s_MyInput_active():
 p_State.switch(ActiveState)

class ActiveState: # StateID = ?
 def s_MyInput_pass():
 # you can also switch states with a string name
 p_State.switch('PassState')

 def s_MyInput_fail():
 p_State.switch(FailState)

p_State.setTimeout(secs, stateOnTimeout)

Inputs Type Description

secs float Timeout duration in seconds

stateOnTimeout class or string New of the class to switch to

There can only be one active timeout per state. If you need to set a new timeout within the state, use the

cancelTimeout method first.

Important

States | 51

Toggle between the FirstState and SecondState until MyInput rises in FirstState.

cancelTimeout

Cancel the current timeout. Can be called anywhere within the state.

Example

class FirstState: # StateID = ?

 # if no input is received in 5 seconds, switch to SecondState
 def s_State_enter():
 p_State.setTimeout(5, SecondState)

 def s_MyInput_rise():
 p_State.switch(EndState)

class SecondState: # StateID = ?

 # wait 5 seconds, return to FirstState
 def s_State_enter():
 p_State.setTimeout(5, FirstState)

class EndState: # StateID = ?
 def s_State_enter():
 print('done')

p_State.cancelTimeout()

States | 52

Give the subject 15 seconds to press MyInput 10 times. If successful, cancel the state timeout and give the

subject unlimited time to reach 20 presses before moving to the success state.

Status

isCurrent

Check if the current state is the given name. This is useful if you have a lot of States defined

but want to do similar actions in multiple states for a given slot method. You can move the

logic into the Always state and avoid repeating yourself. See the example below.

Or if you want to

Example

class TrialState: # StateID = ?
 def s_State_enter():
 # reset counter

p_Global.count.write(0)

 # if target isn't reached in 15 seconds switch to DefaultState
 p_State.setTimeout(15, DefaultState)

 def s_MyInput_rise():
 # increment counter
 p_Global.count.inc()

 # if we reached our first target, cancel timeout
 if p_Global.count.read() == 10:
 p_State.cancelTimeout()
 elif p_Global.count.read() == 20:
 p_State.switch(SuccessState)

class DefaultState: # StateID = ?
 def s_State_enter():
 print('default')

class SuccessState: # StateID = ?
 def s_State_enter():
 print('success')

p_State.isCurrent(stname)

Inputs Type Description

stname class or string Name of state to check

States | 53

In a long list of states, we want to turn the MyOutput on in just two of them.

In this second example, the target state is dynamically set by a global variable. When MyInput2 turns on, the slot

method is captured in the Always state and only continues (turns on Output2) if the current state matches the

target state. This target state can be set on the user interface or somewhere else in the code using the Globals

asset. This could also be tied to a Control asset.

isNotCurrent

Check if the current state is not given name. This is useful if you have a lot of States defined

but don't want to include the same identical slot method in all of them except a small number

of states. You can include this logic check within the Always state. See the example below.

When MyInput turns on, turn on MyOutput in all states unless we're in the DontStim state.

Example

class Always: #StateID = 0
 def s_MyInput1_rise():
 if p_State.isCurrent(State8) or p_State.isCurrent(State20):
 p_Output.MyOutput.turnOn()

 class Always: #StateID = 0
 def s_MyInput2_rise():
 if p_State.isCurrent(p_Global.target_state.read()):
 print('current state is the target state set in the user interface')
 p_Output.MyOutput2.turnOn()

p_State.isNotCurrent(stname)

Inputs Type Description

stname class or string Name of state to check

Example

class Always: #StateID = 0
 def s_MyInput_rise():
 if p_State.isNotCurrent(DontStim):
 p_Output.MyOutput.turnOn()

States | 54

Controls

You can create run-time widgets of all different kinds and read/ write the values of the widget.

Controls will issue a trigger when their value is changed, which can be captured and reacted to

in the Pynapse event loop. You can also read the value of the controls inside any method.

You can add up to 12 custom controls. All available controls and their options are shown in the

images below. Drag and drop the control rows in design-time to change the order they are

displayed at runtime.

User Mode Controls let you start, pause, resume, or stop the state flow in Pynapse during

runtime. User mode controls are enabled by the check box in the Controls tab. See Slot

Methods for Responding to Control Changes for an example of how these might be used.

Controls Tab

Controls | 55

Runtime Tab

Slot Methods for Responding to Control Changes

These control slot methods capture status information about the controls. They are available

as method definitions inside Pynapse states for each input. Write a method with this name to

react to the corresponding event.

All custom control slot methods s_{CONTROL_NAME}_change . Type def s_ in the Pynapse

Code Editor and let the code completion do the work for you.

Slot name Event

s_Umode_start Start button pressed

s_Umode_pause Pause button pressed

s_Umode_resume Resume button pressed

s_Umode_stop Stop button pressed

s_MyControl_change MyControl value changed

Controls | 56

Methods

All control methods have the form p_Control.{CONTROL_NAME}.{METHOD} . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you.

Status

read

Read the current value of the control. For combo box controls, the value is the index into the

list of items in the combo box.

Switch to a starting state when user clicks the 'Start' button on the Pynapse tab at runtime.

Example

class Always: # StateID = 0
 def s_Umode_start():
 p_Global.count.write(0)
 p_State.switch(PreTrial)

 def s_Umode_pause():
 p_Global.count.write(0)
 p_State.switch(Resting)

 def s_Umode_resume():
 p_State.switch(PreTrial)

 def s_Umode_stop():
 print(p_Global.ntrials.read(), 'trials completed')
 p_State.switch(EndTrials)

 # capture any control value change with this
 def s_MyControl_change(value):

print('new control value', value)

value = p_Control.MyControl.read()

Controls | 57

Set the next stimulation based on a slider value controlled by the user at runtime.

Control

write

Write a new value to the control. For combo box controls, the value is the index into the list of

items in the combo box.

Increment a progress bar.

Example

class PrepStim: #StateID = 0
 def s_State_enter():
 # get next stim ready
 wave_freq = p_Control.MyControl.read()
 p_Param.p_Param.WaveFreq_write(wave_freq)

p_Control.MyControl.write(val)

Inputs Type Description

val number New value of the control

Example

class EndTrial: #StateID = 0
 def s_State_enter():

 # increment completed trials counter
 p_Global.completed_trials.inc()

 # update progress bar
 progress = 100 * p_Global.completed_trials.read() / p_Global.desired_trials.read()
 p_Control.MyProgressBar.write(progress)

Controls | 58

setRange

Set the value range of the control between minv and maxv.

p_Control.MyControl.setRange(minv, maxv)

Inputs Type Description

minv number New minimum value for this control

maxv number New maximum value for this control

Controls | 59

Timers

Timers can be used independent of states to control program flow or stimulus presentation.

The period and number of repeats can be modified at runtime within the Python code.

If Control type is 'Trigger', then you initiate the timer with the start method and it runs until it

has reached the number of repeats. In 'Enable' mode, you turn on the timer and can optionally

turn it off prematurely with the turnOn / turnOff method pairs.

Timers Tab

See Synchronizing Events for information on the Sync to State Change option.

Slot Methods for Responding to Timer Ticks

These slot methods capture status information about the timers. They are available as method

definitions inside Pynapse states for each timer. Write a method with this name to react to the

corresponding event.

Slot name Event

s_MyTimer1_tick Fires on each tick of MyTimer1 .

Note: this event does not fire when the timer is first turned on (count = 0)

Timers | 60

The timer slot method has the form s_{TIMER_NAME}_tick . Type def s_ in the Pynapse Code

Editor and let the code completion do the work for you.

Methods

All control methods have the form p_Timer.{TIMER_NAME}.{METHOD} . Type p_ in the Pynapse

Code Editor and let the code completion do the work for you.

Set a timer once a second for 10 seconds, and print the current timer count when it fires

In this example, Synapse stops the recording after 10 seconds and switches to Idle.

Example

class Always: # StateID = 0
 def s_Mode_standby():
 p_Timer.MyTimer.setPeriod(1)
 p_Timer.MyTimer.setRepeats(10)

 def s_Mode_recprev():
 p_Timer.MyTimer.turnOn()

 def s_Timer1_tick(count):
 print(count)

class Always: # StateID = 0
 def s_Mode_standby():
 p_Timer.MyTimer.setPeriod(10)
 p_Timer.MyTimer.setRepeats(1)

 def s_Mode_recprev():
 p_Timer.MyTimer.turnOn()

 def s_Timer1_tick(count):
 print('done')
 syn.setModeStr('Idle')

Timers | 61

Setup

setPeriod

Set the period between timer ticks.

setRepeats

Set the number of ticks before the timer finishes.

Control

turnOn

Start a timer that has Control mode set to 'Enable'. This call is required to start any timer in

'Enable' mode.

turnOff

Stop a timer prematurely. This only works with timers that have Control mode set to 'Enable'.

p_Timer.MyTimer.setPeriod(period_sec)

Inputs Type Description

period_sec number New period, in seconds

p_Timer.MyTimer.setRepeats(reps)

Inputs Type Description

reps number Number of times to repeat the timer tick

p_Timer.MyTimer.turnOn()

p_Timer.MyTimer.turnOff()

Timers | 62

start

Start a timer that has Control mode set to 'Trigger'. This call is required to start any timer in

'Trigger' mode.

p_Timer.MyTimer.start()

Timers | 63

Globals

Globals are global variables you can read/write in your Python logic code. They can also be

added to the runtime interface for visual display, and can also be editing at runtime.

The variable can be any python object. It's string representation will be displayed in the runtime

UI.

This is equivalent to using the global keyword in Python, except by storing it as a Pynapse

asset instead you don't have to remember the global keyword everywhere you want to modify

it, and you also get a runtime interface to see/ edit the current value.

Give each variable a name and a default value in the Globals Tab.

Globals Tab

When Runtime Display is enabled, the same global variables interface is shown in the Pynapse

tab at runtime.

When Allow Edits is enabled, at runtime you can double-click on a variable and change its

value in the dialog.

Editing the variable using the runtime display may changes its data type. After editing, the variable will be an int,

float, str, or list.

Note

Globals | 64

Methods

All globals methods have the form p_Global.{GLOBAL_NAME}.{METHOD} . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you.

Status

read

Read the current value of a global variable. For combo box controls, the value is the index into

the list of items in the combo box (zero-based).

Control

write

Write a new value to the global variable. This can be any python object.

inc

Increment the global variable value.

value = p_Global.varname.read()

p_Global.varname.write(v)

Inputs Type Description

v python object New value assigned to global variable

p_Global.varname.inc(delta=1)

Inputs Type Description

delta number Amount to increase variable value (default=1)

Globals | 65

dec

Decrement the global variable value.

Data Conversion

toFloat

Convert the variable value to a floating point number for math operations

toInt

Convert the variable value to an integer number for math operations

toString

Convert the variable value to a string.

toPretty

Convert the variable to a string containing its name and value. Useful for logging

p_Global.varname.dec(delta=1)

Inputs Type Description

delta number Amount to decrease variable value (default=1)

p_Global.varname.toFloat()

p_Global.varname.toInt()

p_Global.varname.toFloat()

p_Global.varname.toFloat()

Globals | 66

Example

p_Global.varname.write(1)

prints 'varname=1'
print(p_Global.varname.toPretty())

Globals | 67

Synapse Control

Pynapse has built in slots for Synapse mode change events. These are useful in the 'Always'

state to initialize variables or buffers for stimulation before the recording begins.

Slot Methods for Responding to Synapse Mode Changes

These slots capture Synapse system mode change events. They are available as method

definitions inside Pynapse states. Write a method with this name to react to the corresponding

mode change event.

Slot name Event

s_Mode_change(newmode) Triggers on any mode change

s_Mode_idle Mode changed to idle

s_Mode_standby Mode changed to standby

s_Mode_preview Mode changed to preview

s_Mode_record Mode changed to record

s_Mode_recprev Mode changed to preview or record

If you use p_State.switch() inside s_Mode_standby() , this overrides the 'Initial State' setting on the General

Tab.

Important

Synapse Control | 68

SynapseAPI

Pynapse also exposes an instance of the SynapseAPI class as the variable syn in the source

code editor. Type syn. in the Code Editor and code completion shows you all of the available

method calls. For the complete list of SynapseAPI methods and how to use them, see

SynapseAPI Manual.

Preload a stimulus output buffer before the experiment runs

When experiment starts, switch to PreTrial state as the default starting state.

Example

import numpy as np

class Always: #StateID = 0
 def s_Mode_standby():
 import random
 p_Output.MyOutput.setBuffer(np.random.random(1000).tolist())

class Always: #StateID = 0
 def s_Mode_standby():
 p_State.switch(PreTrial)

SynapseAPI calls goes through sockets, and that adds some extra delay. The SynapseAPI calls are also affected

by what is happening in the Synapse window. For example, if you do something that is graphically intensive such

as resizing the windows during a recording, you can see a big (>100ms) lag before the call gets through. It

shouldn't be relied on for time critical events.

Important

User puts system into Standby mode, then when trigger is received Pynapse switches system to Record mode.

Example

class Always: #StateID = 0
 def s_MyInput_rise():
 syn.setModeStr('Record')

Synapse Control | 69

https://www.tdt.com/docs/sdk/synapse-api

Code Editor and Parser

The built-in Python editor is where all your states and events are defined, telling the Pynapse

event loop what do when events happen. Click the 'Edit' button, or double-click on the Source

code, to enable editing.

The built-in Python editor does code completion for you. Every time you press 'Commit' the

parser dynamically generates a list of methods and event triggers you have access to based on

the named inputs, outputs, controls, globals, and timers. All Pynapse assets start with p_ and

all slot methods start with def s_ , so start there and the code completion will show you the

available assets or slots.

Code Editor and Parser | 70

You can also right-click → "Help" on anything in the editor to show more complete

documentation on the object under the cursor.

Asset names are linked to their method calls in the Python

code. Assets that appear in the Python code will have a

lock icon next to their names in their asset tab. If you

decide to change the name of an asset after writing Python code that interacts with it, click the

lock icon to change the name of the asset and update all of the instances of this name in the

Python code.

Assets Code Completion

Slots Code Completion

Code Editor and Parser | 71

Code Tree

The parser identifies all of the states and all of the methods that are written within the states

that respond to events, and builds the Code Tree.

You can click on any item in the Code Tree and the Editor shows you just the selected state or

methods so you are just editing that part of the code. If you want to look at the entire file, click

'Main' in the Code Tree.

Code Editor and Parser | 72

To Add a State

The easiest way to add a state is by right-clicking on an existing state in the Code Tree (or

'Main') and adding a state from the menu. This brings up a state creation wizard that shows

you all the available hardware events you can capture with the state. You choose which

methods to include in the code and a state timeout if desired. This saves you from having to

remember the exact syntax for creating a state every time.

You can also edit the Python code directly with the required state structure:

By default the Code Tree shows only Pynapse states and slot methods. Sometimes you'll write methods

inside states that aren't Pynapse slots. The 'Show All' button will include these methods in the Code

Tree.

Note

class MyNewState: #StateID = ?
 pass

Code Editor and Parser | 73

Working with StateIDs

Classes defined with the #StateID = ? comment are parsed as Pynapse states. If the StateID

is ? then Pynapse will automatically assign a number to the state for you. The StateIDs are

shown next to the state name in the Code Tree.

The StateID number is saved into the data tank when state changes occur during runtime. It is

important that the StateIDs are consistent across recordings. If you make changes to your

Pynapse source code and all of the StateIDs are ? then these numbers will change if you add

or remove states from your source code. This will make it harder to organize your data during

post-processing if you are trying to compare data made with your newer experiment to

recordings made with earlier versions of your experiment.

The solution is to lock the StateIDs to a value right in the comment, like #StateID = 555 . If

you already have code written with automatically generated StateIDs, you can lock the current

StateIDs in place by right-clicking on 'Main' and select 'Commit State IDs'. This will overwrite all

of the #StateID = ? comments with their assigned StateID, like #StateID = 1010 .

After you create a state, you can get back to the creation wizard by right-clicking the state name in the Code Tree

→ Reconfigure.

Note

You can include regular classes in the code that aren't Pynapse states by excluding the #StateID comment from

the class definition.

Note

Code Editor and Parser | 74

Flow Chart

As experiments get more complicated, it is helpful to see an overview of how the

states, inputs, and outputs are connected. Click the Flow Chart button to see a

graphical representation of all these links. Double-click on a state in the Flow Chart to show it

in the code editor.

Organizing Your Code

There are two kinds of files: Pynapse files and Python files.

'Main' is the default block of Pynapse code in the Code Tree. You can have up to three other

'Local' Pynapse code blocks that are also saved in the experiment. These are not files on disk

but rather saved with the experiment in the Synapse database. Right-click on 'Main' in the Code

Tree → Add Local Pynapse Block. You can import/export them if desired.

If you want to have your own classes/modules outside of Synapse you can also link to them

from the experiment. This way you can share common files across experiments. You can link

to as many existing files on disk as you want and they get imported automatically. In the Code

Tree, right-click on 'Main' → Add Python Import File, and choose the Python file.

StateIDs have to be defined in order (top to bottom) in the Python source code. For example, this code is invalid

because the state class defined with #StateID = 2 is before #StateID = 1 .

Important

class Always: #StateID = 0
 def s_Mode_standby():
 p_State.switch(MyState1)

class MyState1: #StateID = 2
 def s_State_enter():
 print('MyState1')
 p_State.setTimeout(1, MyState2)

class MyState2: #StateID = 1
 def s_State_enter():
 print('MyState2')
 p_State.setTimeout(1, MyState1)

Code Editor and Parser | 75

Testing

You can right-click on any state, method, or Python file in the Code Tree and select 'Test'. This

will load the source file and run every method inside of it. Any obvious errors that will come up

at run-time (like naming problems) are shown in the Python Output window at the bottom, with

a reference to the method and line number causing the error.

In the example below, setTimeout was incorrectly capitalized (should have used code

completion!).

See Run-Time and Debugging for more debugging tips.

Code Editor and Parser | 76

Run-Time and Debugging

The Pynapse run-time interface has two modes. The default view shows the current State in

red text, any Controls and Globals assets defined at design-time, and the Console Output

shows any print outputs or error messages from the Python code.

Debug View

Click the Debugger icon to open the expanded run-time view. This gives you a more in-

depth look at the events in Pynapse and allows you to manipulate the Pynapse state

and manually trigger events during the experiment.

Run-Time and Debugging | 77

Call Tree

The Call Tree shows all the states and slot methods that Pynapse knows about. An icon next to

the state/slot name gives you more status information:

Expand Mode determines what methods to show within the states.

Icon Description

Currently active state*

A green lightning bolt is briefly shown next to successful calls.

A red warning sign is briefly shown next to calls that had errors.

* The Always state is always also active and slot methods within it can always be triggered by Pynapse events

Note

Run-Time and Debugging | 78

Time Line

The Time Line shows when a state is active and when slot methods fired. If there was an error

during the slot method, it will show a red bar. You can click on events in the time line to see

more information about it in the Call Log.

The controls at the top can stop/resume the time line, or move backward/ forward in time for

review.

Span is how much time to show in the time line. When it gets to the end it clears the time line

and starts drawing from the left. Overlap is what percentage of the end of the previous time

line to include when the time line refreshes.

Sync To can be used to reset the time line when a particular state change happens, so you can

easily follow the events in a particular state. This is helpful for debugging rapid events using a

short time Span.

Call Log

All Pynapse events are captured in the Call Log with a timestamp and the amount of time

spent in that method.

Icon Description

Show only the states and no slot methods

Show all slot methods within current state

Show all slot methods within all states

The information shown here is also optionally saved to a text file with the rest of your data. Enable the Call

Logging setting in the General Tab at design-time.

Tip

Run-Time and Debugging | 79

If you click on an event in the call log, that event will be highlighted in the Call Tree, and vice

versa. If it was an error, it will be outlined in red.

The window underneath the call log shows the console output for the selected call, including

any error messages generated by that call, so you can track it down in the source code.

Icon Description

You can optionally exclude the 'Always' state calls by turning off the Always button.

The Show All button will show every Pynapse event, including state timeouts, internal state changes, and

global variable changes.

A green lightning bolt is shown next to successful calls.

A red warning sign is shown next to calls that had errors.

Pause the time line so the Call Log doesn't refresh while you are trying to look at the error messages

Note

Run-Time and Debugging | 80

Debugging

Manual Control

You can manually control the state flow in the Call Tree. Double-click on any state to switch

Pynapse into that state. The event will be capture in the Call Log.

You can also double-click on a slot method to trigger it manually. This will not be captured in

the call log.

Live Code Editing

The bottom of the Debugging window is a view of the source code. Click on a state or a slot

method in the Call Tree to see its source. Click the Edit button to make live changes to the

code. Changes made here will be immediately applied the next time the slot fires.

The Allow Run-Time Call Control check box on the General Tab at design-time must be enabled for manual

control to work.

Important

Live Edits will reload the State class and reinitialize any state variables. In the example below, the ct variable that

is a member of MyState will reset to 0 if changes are made to any slot method within MyState during runtime

debugging.

Caution

class MyState: #StateID = ?
 ct = 0
 def s_MyInput_rise():
 print(State2.ct)
 p_Output.MyOutput.fire()
 State2.ct += 1

The Allow Run-Time Edits check box on the General Tab at design-time must be enabled for manual control to

work.

Important

Run-Time and Debugging | 81

If Run-time Persistence for this gizmo is enabled, those changes will apply to your experiment source code when

you go back to run-time, otherwise those changes are lost.

Important

Run-Time and Debugging | 82

Tips and Tricks

Synchronizing Events

By default, all outputs in the Python code are executed sequentially as they are written, In the

example below, outputs and timers are turned on in a slot method. The sleep statements are

used to exaggerate the effect by adding additional latency between each call.

The two outputs and the timer have 'Epoc Save' turned on. The runtime output looks like this:

class MyState1: #StateID = 1
 def s_MyInput_rise():

 p_Output.MyOutput1.fire()
 time.sleep(0.1)

 p_Timer.MyTimer1.setPeriod(.1)
 p_Timer.MyTimer1.setRepeats(3)
 p_Timer.MyTimer1.start()
 time.sleep(0.1)

 p_Output.MyOutput2.fire()
 time.sleep(0.1)

 p_State.switch(MyState2)

Event Description

P1S/ State change event timestamp

Out1 Output1 fired

Tim1 Timer1 ticked

Out2 Output2 fired

Tips and Tricks | 83

You can see the noticeable 100 ms gaps in between the output events, and all of these events

occur before the state change ('P1S/' = 2 in this example).

For coordinating stimulus events or anything else that has to happen on the hardware

simultaneously, the Outputs, Parameters, and Timers have a Sync to State Change option. If all

of the outputs and timers in the last example had this option enabled, then the result looks like

this:

The sleep delays are still there but now all outputs fire precisely when the state changed to 2.

Delays

The polling loop delay depends on the 'Polling Rate' setting in the Pynapse General Tab. The

typical round-trip delays (read Pynapse input → set Pynapse output) are shown below.

For tighter behavioral state control, always enable Maximum Polling Rate.

The p_State.switch statement must come after any calls to set the timers or outputs for this to work properly.

Important

Polling Rate Maximum Delay

enabled 4-5 ms

disabled ~40 ms

Maximum polling rate is not available when using Corpus hardware emulation

Note

If using the SynapseAPI class in Pynapse, there is a variable delay that ranges from 5 to 30 ms. If the computer is

under heavy processing, there can be delay spikes up to ~100 ms.

Note

Tips and Tricks | 84

Runtime Plots

If you would like to do online plotting or make your own custom GUIs then matplotlib and

ipykernel==4.10.1 must also be installed in your Python environment.

If you want to plot something on screen using matplotlib you must include this line of code at

the top of your Python code:

%matplotlib

If for some reason you need to set the matplotlib backend is set, once it is set it cannot be changed for the entire

interpreter session. For example, if in between recordings you change %matplotlib qt to %matplotlib tk , the

second statement is ignored and qt backend will be used. If Pynapse code gets modified such that a different

backend is used, a complete restart of Synapse is required.

Global and Control asset 'writes' go through the SynapseAPI and have a longer delay.

Any calls that 'read' an asset value (except for Globals which are python variables) also go through the

SynapseAPI.

Important

Note about using a different matplotlib backend

Tips and Tricks | 85

Installing Standard Python

Standard python.exe installs from https://www.python.org/downloads/windows/

During installation, select 'Customize Installation'

Select 'Install for All Users' and 'Add Python to environment variables'

Change the installation directory to C:\Python3\

In Synapse, add a Python Coding Gizmo from the Specialized gizmo list.

We recommend installing 64-bit Python on 64-bit Windows 10. This is the Python 3.x.x "Windows x86-64

executable installer" option.

On 32-bit machines, install the Python 3.x.x "Windows x86 executable installer".

Note

1.

a.

b.

2.

Installing Standard Python | 86

https://www.python.org/downloads/windows/

In Pynapse General Tab, set the Python Install Directory to your installed Python, which in

this case is:

C:\Python3\python.exe

You will likely get an error that says it is missing ipykernel. There is one more step. Go to

Windows command prompt (Start → "cmd"), and type:

pip install ipykernel==4.10.0

Back in Synapse, press F7 to recompile the experiment, which also tries to load Pynapse

again. If everything is successful you should get no error message.

In Synapse, go to Menu → Preferences. The Python Directory will have updated to the path

you just used. Select 'Lock' so this path is the default path whenever you use a Pynapse

gizmo.

3.

4.

This specific version of ipykernel is for matplotlib support. If you want to use Pynapse for online plotting, install

matplotlib:

pip install matplotlib

Install the tdt package for data analysis:

pip install tdt

Note

5.

6.

Installing Standard Python | 87

https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-python/getting-started/

Environments

Pynapse also works in Python virtual environments. A virtual environment is a self-contained

directory tree that contains a Python installation for a particular version of Python, plus a

number of additional packages.

Environments are simply directories on disk, so it is easy to delete/recreate environments if

they get in a bad state. It is more difficult to do this with the 'base' environment that installs

with your Python installer. It is recommended that you create a specific environment for

Pynapse to use.

Environments are created in standard python.exe installation with the venv module.

From the command line:

python -m venv C:\Python38\envs\pynapse

Then in Pynapse in the General Tab, your Python Install Directory would be:

C:\Python38\envs\pynapse\Scripts\python.exe

Installing Standard Python | 88

https://docs.python.org/3/library/venv.html

To install pip packages from the command line (Start → cmd), you first activate the

environment:

Tkinter doesn't have up-to-date Windows support. If you wish to use tkinter for a custom GUI or the tkinter

backend for matplotlib then ipykernel <= 4.10.1 is a requirement.

pip install ipykernel==4.10.0

See https://github.com/ipython/ipykernel/issues/358 and https://github.com/ipython/ipykernel/issues/518.

C:\Python38\envs\pynapse\Scripts\activate.bat
pip install ipykernel matplotlib pyqt5

Note for tkinter users

Installing Standard Python | 89

https://github.com/ipython/ipykernel/issues/358
https://github.com/ipython/ipykernel/issues/518

	Table of Contents
	Overview
	Benefits of Pynapse
	Pynapse Gizmo
	Event Loop
	Python State Machine
	Main Assets of Pynapse Gizmo
	Common Applications

	Requirements
	Installing Python
	Anaconda Python Installation
	Environments

	Quick Start Example
	Using the Always State
	Using Multiple States

	Inputs
	Slot Methods for Responding to Input States
	Duration Testing
	Epoc Storage
	Buffering
	Methods
	Buffer operations
	setBufferSize
	armBuffer
	disarmBuffer
	getBuffer

	Duration Settings
	setTimingTest

	Manual Control
	manualOn
	manualOff
	manualPulse

	Number Conversion Settings
	setFeatureThresholds
	setScale
	setSmoothing

	Status
	isOn
	isOff
	getRawInput
	getStatusBits

	Outputs
	Buffering
	Parameter Outputs
	Output Methods
	Manual Control
	fire
	turnOn
	turnOff

	Duration Settings
	setPulseShape

	Buffer operations
	setBuffer

	Status
	isOn
	isOff

	Parameter Methods
	Par1_write
	List_write

	States
	Slot Methods for Responding to State Changes
	State Timeouts
	Methods
	State Control
	switch
	setTimeout
	cancelTimeout

	Status
	isCurrent
	isNotCurrent

	Controls
	Slot Methods for Responding to Control Changes
	Methods
	Status
	read

	Control
	write
	setRange

	Timers
	Slot Methods for Responding to Timer Ticks
	Methods
	Setup
	setPeriod
	setRepeats

	Control
	turnOn
	turnOff
	start

	Globals
	Methods
	Status
	read

	Control
	write
	inc
	dec

	Data Conversion
	toFloat
	toInt
	toString
	toPretty

	Synapse Control
	Slot Methods for Responding to Synapse Mode Changes
	SynapseAPI

	Code Editor and Parser
	Code Tree
	To Add a State
	Working with StateIDs
	Flow Chart

	Organizing Your Code
	Testing

	Run-Time and Debugging
	Debug View
	Call Tree
	Time Line
	Call Log

	Debugging
	Manual Control
	Live Code Editing

	Tips and Tricks
	Synchronizing Events
	Delays
	Runtime Plots

	Installing Standard Python
	Environments

