
Pynapse Manual

Python Programming in Synapse

Updated 2025-02-27

© 2016-2025 Tucker-Davis Technologies, Inc. (TDT). All rights reserved.

Tucker-Davis Technologies
11930 Research Circle
Alachua, FL 32615 USA
Phone: +1.386.462.9622
Fax: +1.386.462.5365

Notices

The information contained in this document is provided "as is," and is subject to being changed,
without notice. TDT shall not be liable for errors or damages in connection with the furnishing, use, or
performance of this document or of any information contained herein.

The latest versions of TDT documents are always online at https://www.tdt.com/docs/

Pynapse Manual | 2

https://www.tdt.com/docs/

Table of Contents

Overview

6Benefits of Pynapse

7Pynapse Gizmo

7Event Loop

8Python State Machine

8Session Manager

9iCon Integration

10Main Assets of Pynapse Gizmo

10Common Applications

Requirements

12Installing Python

12Custom Plotting and User Interface

13Install Other Packages

13Other Installation Methods

Quick Start Example

15Using the Always State

16Using Multiple States

iCon Inputs

19iCon Tab

20Run-time Interface

21Slot Methods for Responding to Input States

22Methods

iCon Outputs

30iCon Tab

31Run-time Interface

32Output Methods

States

39Slot Methods for Responding to State Changes

40State Timeouts

41Methods

Timers

46Control Modes

47Pulse Control

48Slot Methods for Responding to Timer Ticks

49Methods

Table of Contents | 3

Controls

54Phase Presets

55Locking

56Slot Methods for Responding to Control Changes

56Methods

Sessions

60Session Mode Controls

61Flow Control

65Scheduler

66Slot Methods for Responding to Session Changes

67Methods

Metrics

75Run-time Interface

82Methods

Logs

85Control Logging

86Metric Logging

87Session Logging

88Custom Text Logging

89Methods

UDP

91Control Packet

91Metric Packet

92Custom Text Packet

93Methods

94Programming Guide

Synapse Control

96Slot Methods for Responding to Synapse Mode Changes

97SynapseAPI

Gizmo Inputs

100Logic Conversion for Number Signals

104Slot Methods for Responding to Input States

105Duration Testing

107Epoc Storage

107Buffering

108Methods

Gizmo Outputs

121Buffering

121Parameter Outputs

Table of Contents | 4

121Output Methods

127Parameter Methods

General Tab

130iCon Integration

130Polling Loop

131Debugging

131States

131User Log File

131UDP Broadcast

Code Editor and Parser

134Code Tree

137Organizing Your Code

138Testing

Run-Time and Debugging

140Debug View

144Debugging

Tips and Tricks

145Timeout Errors

146Synchronizing Events

147Delays

148Run-time Plots

Pynapse Training Videos

149Introduction

Installing Anaconda Python

152Environments

153Pynapse Setup

Installing Standard Python

157Environments

157Pynapse Setup

Table of Contents | 5

Overview

Pynapse is a gizmo for tightly integrating Python coding into

your Synapse experiment.

Many users write external code in Python (or MATLAB) that

runs alongside their Synapse experiments. These programs are

used for overall experiment control, stimulus delivery,

behavioral control, and online analysis - things that are either

novel paradigms that don't exist in the current gizmo set or

can't easily be programmed to run directly on the real-time

hardware.

There are several challenges faced by these users and Pynapse is designed to address these

issues with an intuitive and powerful interface.

Benefits of Pynapse

Pynapse is more than a great embedded Python editor within Synapse. You get:

Great Python editor with all the bells and whistles (highlighting, code completion, and

more)

Easy-to-learn, structured programming framework

Fully automatic Synapse synchronization. Your Python code is saved and version

controlled with your experiment

Powerful hardware (iCon or RZ I/O) and software seamlessly integrated

Runtime live code monitoring

Automatic code flowcharting

Built-in trial and session controls

Pynapse underwent a significant revision in v96. This documentation is for v96 and above. For Pynapse v95

documentation, see Pynapse Manual for v95 Synapse.

Important

•

•

•

•

•

•

•

Overview | 6

https://www.tdt.com/files/manuals/PynapseManual_v95.pdf

Track experiment progress and plot results

Pynapse Gizmo

Pynapse Gizmo Block Diagram

All of this is built into the Pynapse gizmo. Use the Python installation provided in Synapse (or

bring in your own) and drop the Pynapse gizmo into your Synapse experiment.

The circuit that runs on the real-time hardware has all the features that anyone writing custom

Python code to interact with the hardware. Pynapse runs an optimized polling loop that

synchronizes Python to Synapse, faster than existing methods. The State Machine architecture

in Pynapse yields tight programs that are easy to read and easy to debug.

Event Loop

A tight polling loop is continuously running and monitoring hardware events defined in the

experiment.

Hardware event is detected by the Pynapse event loop.

Call is made into Python to execute a method written by the user

Call is logged and timestamped

Events are sent back to the hardware

•

1.

2.

3.

4.

Overview | 7

All of this happens in milliseconds.

Python State Machine

The Python code can be organized into 'States'. Pynapse keeps track of which state it is in, and

hardware events will only trigger Python calls defined within that state. State changes are also

controlled by the Python code, and automatically timestamped and stored with the rest of your

data for easy analysis.

Session Manager

State changes make up trials. Trials can be organized into blocks, and sessions. Define metrics

that are logged and plotted at any of these intervals - per trial, per block, per session, or any

time they change. Simply set up the number of trials and blocks you want to run, call

startTrial inside the Python state machine to initiate a trial, and the rest is taken care of

automatically.

Overview | 8

Take it another step further by organizing groups of experiment settings into Phases, then feed

the session manager a schedule of the how many trials/block for each phase. For more open-

ended experiments that don't have a fixed number of trials / blocks, you can control the entire

trial/block/session flow manually from your Python script. See Sessions for more information.

iCon Integration

Pynapse runs in two different I/O modes. You can use the gizmo inputs and outputs to connect

to RZ input/output links, or you can integrate an iCon module directly into Pynapse. Configure

all iCon inputs and outputs in Pynapse, and access them in your Python code.

See iCon Inputs and iCon Outputs for more information.

Overview | 9

Main Assets of Pynapse Gizmo

Pynapse has the following fundamental asset classes built into it that are accessible in the

Python code.

Common Applications

Program Control

Start/stop Synapse or other programs based on conditional triggers

Run Synapse for a set duration

Behavioral Control

Implement complex behavioral paradigms over trials that control:

Cues

Waiting periods

Input decisions

Asset Description

iCon Inputs Connect to iCon input events

iCon Outputs Drive iCon logic outputs under Python control.

States Switch states, set timeouts, or capture state change events

Timers Generate custom timer to trigger stimuli or time experiment events

Controls Provide experiment variable controls with standard user interface elements

Sessions Manage the flow of the experiment by splitting your sessions into blocks and trials.

Run sets of controls in phases and trigger metric updates.

Metrics Log and plot experiment metrics per trial, block, or session.

Share global variables across your Python code.

Logs Log metrics, control values, and session information during the experiment

UDP Send a network packet with metrics or custom text during the experiment to a client application

Synapse Control Capture Synapse state changes, and use SynapseAPI to control other gizmos from within

Pynapse

Gizmo Inputs Connect to gizmo inputs. Can integrate with RZ inputs directly.

Gizmo Outputs Drive logic and waveform gizmo outputs under Python control.

Can integrate with RZ outputs directly.

•

•

•

◦

◦

◦

Overview | 10

Reward output

and more

Signal Analysis and Display

Collect signals in a triggered buffer or through the API

Perform calculations, such as:

Presentation averaging, spike counting, or FFT

Plot results using Python plotting libraries (such as Matplotlib)

Stimulus Presentation

Generate simple or complex stimuli to present during triggered conditions using Pynapse

output control or built-in buffers

◦

◦

•

•

◦

•

•

Overview | 11

Requirements

Installing Python

Pynapse requires an installation of Python. A pre-built Python 3.7.9 folder installs to C:

\TDT\python-3.7.9 with Synapse and is automatically configured in Pynapse. It has

everything you need to run Pynapse out of the box.

Custom Plotting and User Interface

If you want to use matplotlib and/or PyQt5 to develop your own custom plotting and user

interface that extends beyond Pynapse's built-in plots and user controls, follow these

instructions:

Download the pre-built Python folder from TDT's website.

Delete the existing C:\TDT\python-3.7.9 , and extract the downloaded zip contents into C:

\TDT\python-3.7.9

1.

2.

Requirements | 12

https://www.tdt.com/docs/pynapse/assets/python-3.7.9-qt.zip

Install Other Packages

If you simply want to add a package or two to the pre-installed python folder provided by TDT,

then open a command prompt, navigate to the python folder, and run pip install. For example,

this installs the scipy package:

Other Installation Methods

Anaconda Python

Anaconda includes many scientific packages pre-installed for you. Choose this if you want to

add these modules to your Python environment or if you are doing any data analysis with

Python on this computer. For the Anaconda Python installation method click here.

Standard Python

Advanced users who don't prefer Anaconda can install Python from the web instead. For the

standard Python installation method click here.

cd C:\TDT\python-3.7.9
python -m pip install scipy

Requirements | 13

Quick Start Example

In this example we want to turn a light on with the capture of a button press, and then turn the

light off when the button is released. We will have a single input for our button ('Button') and a

single output for the light ('Light'). If you were to code this in Python, it might look something

like this:

In Pynapse, instead of using a while loop, we define things called States that can call upon

specified methods that we call Slot Methods and Asset Methods when certain hardware

events occur. Pynapse knows the current State and is constantly polling the inputs directly

from the hardware in a tight loop. When a hardware event occurs that has a matching Slot

Method in the current State, that Slot Method gets triggered. The result of this is simplicity in

how your state machine is coded - instead of using embedded while loops and conditional

statements, you can simply use States and integrated Slot Methods and Asset Methods to

issue commands and move from one state to another depending on what events have

occurred on the hardware or outputs of code calculations.

import time

while True:

 print('WaitState entered')

 # turn off output
 Light.off()

 # wait until button is pressed
 while Button.false():
 time.sleep(.01)

 print('OnState entered')

 # turn on output
 Light.on()

 # wait until button is false
 while Button.true():
 time.sleep(.01)

 # go back to beginning

Quick Start Example | 14

Here is a table of important definitions of terms you will see throughout this example and in

the Pynapse manual:

For the quick start example, we are going to demonstrate how to perform our Light on/off task

in two ways: the first is going to use the initial 'Always' State in Pynapse; the second is going to

show you how to use multiple States to switch between active pieces of code and perform

certain tasks based on captured hardware events.

Using the Always State

The special State called 'Always' runs on every polling loop regardless of what the Pynapse

active State is. In our example, we can take advantage of this special State by just focusing on

writing code that triggers based on hardware events and not worrying about the Pynapse State

machine. Since the 'Always' State is present in the Pynapse Source by default, all we write are

Slot Methods and Asset Methods:

A high-level translation of this code would read as follows:

Term Definition

state Specially defined Python class that has #StateId = ? at the end of the class definition

method Any function defined inside a class using the def keyword

slot method Special method that Pynapse calls in response to events. Slot method names always begin with a

s_ prefix

asset Special Pynapse classes that interact with inputs, outputs, states, controls, globals, and timers.

Assets always begins with a p_ prefix. For reference, the list of all slot methods that these assets

can trigger, and methods you can use to interact with the assets in Python, can be found in the

Assets Reference section of this manual.

function General name used for any function defined outside of a class with the def keyword

Pynapse Source

class Always: #StateID = 0

 def s_Button_rise():
 p_Output.Light.turnOn()
 print('Light is on!')

 def s_Button_fall():
 p_Output.Light.turnOff()
 print('Light is off!')

Quick Start Example | 15

In the Always State, if the 'Button' input true (button is pressed), then turn the 'Light' output on

and print "Light is on!"; if the 'Button' input is false (button is released), then turn the 'Light'

output off and print "Light is off!".

Here is the same translation using Pynapse terminology:

As mentioned, Pynapse is constantly polling the hardware for events that trigger methods

inside of the current active State (Always). In this case, we've defined two Slot Methods

's_Button_rise' and 's_Button_fall' which are part of the Input Assets. The 's_Button_rise' Slot

Method triggers when the button is pressed (Button input changes to true) and the

's_Button_fall' triggers when the button is released (Button input changes from true to false).

When the button press is detected, Pynapse internally executes the Output Pynapse Asset

Method (Light.turnOn), which toggles the output logic signal from low to high. When the button

is released, the Light.turnOff Asset Method is executed.

After we test this code (right-click 'Main' → 'Test') and go to run-time, you will see the Light

output toggle on and off with the pressing or release of the Button input.

Using Multiple States

This example was entirely coded in the Always State. Now, we'll take advantage of Pynapse's

built-in State Machine. Using multiple Pynapse States has major advantages at runtime,

especially as your paradigm increases in complexity. You get a visual indicator of what State

you are in for behavior monitoring and the State changes are timestamped and recorded in the

data tank synchronized with the rest of your data. There are some other debugging features

you get at run-time as well, discussed in more detail in Run-Time and Debugging.

If the button was released first (e.g you were pressing down the button as you went to run-time then let go) the

's_Button_fall' Slot Method would trigger first. These Slot Methods are independent functions that are beholden

only to detected hardware events - they do not influence each other.

Note

All Pynapse Slot Methods start with s_ and all Pynapse Assets start with p_ . Remembering these two prefixes

makes it easy to use code completion inside the Pynapse Code Editor to see all the available Slots and Assets

right inside the editor and quickly find what you are looking for.

Important

Quick Start Example | 16

Here we define three states: Always, WaitState and LightOn. When moving to run-time

(Standby, Preview, or Record mode) Pynapse enters the Always State and the 's_Mode_recprev'

Slot Method is triggered. This is a Synapse Control Slot Method that detects when Synapse

has changed mode from Idle to Preview or Record. Once 's_Mode_recprev' is triggered the

'p_State.switch(WaitState)' Asset Method is executed. This key asset tells Pynapse to move to

a new State.

Next, Pynapse enters WaitState and immediately runs a specially named Slot Method called

's_State_Enter'. In this example, the s_State_Enter Slot Method turns off the Output (Light) by

executing the 'p_Output.Light.turnOff' Output Asset and prints our familiar string.

Now, just like in the first example that only used the Always State, we monitor hardware events

and wait for the Input (Button) to become true, wherein another switch Asset Method is

executed and we move to our third State (LightOn).

Finally, we enter the LightOn State. As we enter, the 's_State_enter' Slot Method is triggered and

the 'p_Output.Light.turnOn' Asset Method is executed. As you can see, coordinating output

events to State changes is a simple way to write conditional events in the Pynapse State

Machine. Similarly to the WaitState, Pynapse will continue polling until the 's_Button_fall' Slot

Pynapse Source

class Always: #StateID = 0

 def s_Mode_recprev():
 p_State.switch(WaitState)

While WaitState is our active State a release of the button will not do anything since there are no Slot Methods in

WaitState that detect falling-edge hardware events.

Note

class WaitState: #StateID = ?

 def s_State_enter():
 p_Output.Light.turnOff()
 print('Light is off!')

 def s_Button_rise():
 p_State.switch(LightOn)

Quick Start Example | 17

Method is triggered by a button release, wherein we switch back to WaitState and the Output

(Light) is turned off.

class LightOn: #StateID = ?

 def s_State_enter():
 p_Output.Light.turnOn()
 print('Light is on!')

 def s_Button_fall():
 p_State.switch(WaitState)

Notice there were no while loops used in these examples. In Pynapse you should almost never write while

loops. Its polling loop handles this for you. All of your methods should return immediately so the polling loop can

continue executing.

Important

Quick Start Example | 18

iCon Inputs

When an iCon is attached to the Pynapse Behavioral Controller in the General Tab, an

additional iCon tab appears. This gives you a unified interface that lets you configure the iCon

inputs/outputs directly within Pynapse and integrates them in the Python code editor.

iCon Tab

Configure the iCon inputs/outputs in the iCon tab. See Logic Input Processor in the Synapse

Manual for information on setting up the iCon inputs and pre-processing them so Pynapse can

capture event changes.

iCon Inputs | 19

https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#logic-input-processor

iCon Tab

Run-time Interface

The run-time interface has a button for each input and an LED indicator that shows the current

state of the input. For the iMn modules, additional options that are available during design-time

can also be modified during run-time.

iCon Inputs | 20

iCon Run-time Interface

Click on the input name to manually trigger it. Hold down CTRL and click an input name to

'mute' it. This prevents the input from triggering Pynapse events.

Slot Methods for Responding to Input States

These input slots capture status information about the inputs. They are available as method

definitions inside Pynapse states for each input. Write a method with this name to react to the

corresponding event.

Slot name Operation Event

s_Input1_rise() Status input changed to true

s_Input1_fall() Status input changed to false

s_Input1_active() Duration input passed the 'Time to Active' duration test (see Duration Testing)

s_Input1_pass() Duration input passed the 'Time to Pass' duration test (see Duration Testing)

s_Input1_fail() Duration input failed the 'Time to Pass' duration test, after passing 'Time to Active' (see

Duration Testing)

iCon Inputs | 21

https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#duration-testing
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#duration-testing
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#duration-testing

Move through behavioral states based on status of MyInput

Methods

All input methods have the form p_Rig.{INPUT_NAME}.{METHOD} . Type p_ in the Pynapse

Code Editor and let the code completion do the work for you. The name of each method gets

replaced with the name of your actual output, so if you name the input 'NosePoke' then

p_Rig.NosePoke.isOn() is an available method.

The name of each slot method ('Input1' above) gets replaced with the name of your actual input, so if you name

the input 'NosePoke' then s_NosePoke_rise() is an available slot.

Note

Example

class PreTrial:
 def s_MyInput_rise():
 p_State.switch(StartTrial)

class StartTrial: # StateID = ?
 def s_MyInput_active():
 p_State.switch(ActiveState)

 def s_MyInput_fall():
 p_State.switch(PreTrial)

class ActiveState: # StateID = ?
 def s_MyInput_pass():
 p_State.switch(PassState)

 def s_MyInput_fail():
 p_State.switch(FailState)

iCon Inputs | 22

Duration Settings

setActTime

Override the duration test 'Time to Active' setting. This is only available if 'Duration Testing' is

enabled on the input.

Modify the timing test based on performance.

setPassTime

Override the duration test 'Time to Pass' setting. This is only available if 'Duration Testing' is

enabled on the input.

Modify the timing test based on performance.

p_Rig.MyInput.setActTime(acttime_sec)

Inputs Type Description

acttime_sec float Time to Active, in seconds

Example

def s_State_enter():
 # if more than 5 successful trials, increase the time to active by 50 ms.
 if p_Metric.success.read() > 5:
 p_Metric.active_time.inc(delta=0.05)
 p_Rig.MyInput.setActTime(p_Metric.active_time.read())

p_Rig.MyInput.setPassTime(passtime_sec)

Inputs Type Description

passtime_sec float Time to Pass, in seconds

Example

def s_State_enter():
 # if more than 5 successful trials, increase the time to pass by 50 ms.
 if p_Metric.success.read() > 5:
 p_Metric.pass_time.inc(delta=0.05)
 p_Rig.MyInput.setPassTime(p_Metric.pass_time.read())

iCon Inputs | 23

setRateThresh

Override the rate testing 'Rate Threshold' setting. This is only available if 'Rate Testing' is

enabled on the input.

Modify the rate threshold based on performance.

Manual Control

Manual turn inputs on, off, or pulse during runtime. Useful for debugging.

manualOn

Manually turn on the input.

Turn on the input when entering a state.

p_Rig.MyInput.setRateThresh(ratethr_hz)

Inputs Type Description

ratethr_hz float Rate testing threshold, in Hertz

Example

def s_State_enter():
 # if more than 5 successful trials, increase the rate threshold by 1 Hz.
 if p_Metric.success.read() > 5:
 p_Metric.rate_thresh.inc()
 p_Rig.MyInput.setRateThresh(p_Metric.rate_thresh.read())

p_Rig.MyInput.manualPulse()

Example

def s_State_enter():
 p_Rig.MyInput.manualOn()

iCon Inputs | 24

manualOff

Manually turn off the input.

Turn off the input when exiting a state.

manualPulse

Manually pulse the input.

Pulse the input when entering a state.

setMute

Mute the input so it can't trigger, or unmute it.

p_Rig.MyInput.manualPulse()

Example

def s_State_exit():
 p_Rig.MyInput.manualOff()

p_Rig.MyInput.manualPulse()

Example

def s_State_enter():
 p_Rig.MyInput.manualPulse()

p_Rig.MyInput.setMute(muted)

Inputs Type Description

muted bool Change the input mute status (True or False)

iCon Inputs | 25

Status

Get information on the current state of the input.

isOn

Returns true if the input is currently true.

When entering a state, check if an input is already true.

isOff

Returns true if the input is currently false.

When entering a state, check the status of the input.

p_Rig.MyInput.isOn()

Example

def s_state_enter():
 if p_Rig.MyInput.isOn():
 print('MyInput is on')
 else:
 print('MyInput is off')

p_Rig.MyInput.isOff()

Example

def s_state_enter():
 if p_Rig.MyInput.isOff():
 print('MyInput is off')
 else:
 print('MyInput is on')

iCon Inputs | 26

getStatusBits

Read the current state of an input as a bitwise integer value. Bit order is:

Fail | Pass | Active | Fall | Rise | True

Used by the Pynapse polling loop.

iMn Input Settings

The iMn modules have analog inputs that are converted to logic signals. These functions

override the analog-to-logic conversion settings at runtime. See iMn Input Processor for more

information.

setProcLowPass

Set the Lowpass Frequency, in Hertz. This is only available if Processing mode is Complex and

'Frequency Range' is not 'Unlimited'.

setProcHighPass

Set the Highpass Frequency, in Hertz. This is only available if Processing mode is Complex and

'Frequency Range' is not 'Unlimited'.

p_Rig.MyInput.getStatusBits()

p_Rig.MyInput.setProcLowPass(hz)

Inputs Type Description

hz float Set the lowpass frequency, in Hertz

p_Rig.MyInput.setProcHighPass(hz)

Inputs Type Description

hz float Set the highpass frequency, in Hertz

iCon Inputs | 27

https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#imn-input-processor
https://www.tdt.com/docs/synapse/hardware/icon-imn/#complex
https://www.tdt.com/docs/synapse/hardware/icon-imn/#complex

setProcGain

Set the input gain on the signal, in dB. This is only available if Processing mode is Simple or

Complex. See iMn Input Processor for more information.

setProcThresh

Set the input gain on the signal, in dB. This is only available if Processing mode is Simple or

Complex. See iMn Input Processor for more information.

setProcHistReduce

Set the input gain on the signal, in dB. This is only available if Processing mode is Simple or

Complex. See iMn Input Processor for more information.

p_Rig.MyInput.setProcGain(v)

Inputs Type Description

v float Set the input gain, in dB

p_Rig.MyInput.setProcThresh(v)

Inputs Type Description

v float Set the input gain, in dB

p_Rig.MyInput.setProcHistReduce(v)

Inputs Type Description

v float Set the input gain, in dB

iCon Inputs | 28

https://www.tdt.com/docs/synapse/hardware/icon-imn/#simple
https://www.tdt.com/docs/synapse/hardware/icon-imn/#complex
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#imn-input-processor
https://www.tdt.com/docs/synapse/hardware/icon-imn/#simple
https://www.tdt.com/docs/synapse/hardware/icon-imn/#complex
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#imn-input-processor
https://www.tdt.com/docs/synapse/hardware/icon-imn/#simple
https://www.tdt.com/docs/synapse/hardware/icon-imn/#complex
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#imn-input-processor

setProcSmooth

Change the smoothing filter applied to the input signal before it goes through the logic

conversion. This is only available if Processing mode is Complex. See iMn Input Processor for

more information.

p_Rig.MyInput.setProcSmooth(ms)

Inputs Type Description

ms float Time constant of the low-pass smoothing filter, in ms (0=off)

iCon Inputs | 29

https://www.tdt.com/docs/synapse/hardware/icon-imn/#complex
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#imn-input-processor

iCon Outputs

When an iCon is attached to the Pynapse Behavioral Controller in the General Tab, an

additional iCon tab appears. This gives you a unified interface that lets you configure the iCon

inputs/outputs directly within Pynapse and integrates them in the Python code editor.

iCon Tab

Configure the iCon inputs/outputs in the iCon tab. See Logic Output Processor in the Synapse

Manual for information on setting up the iCon outputs how to convert Pynapse function calls

to physical hardware events.

iCon Outputs | 30

https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#logic-output-processor

iCon Tab

Run-time Interface

The run-time interface has a button for each output and an LED indicator that shows the

current state of the output. For the iMn and iS9, additional options that were available during

design-time can also be modified during run-time.

iCon Outputs | 31

iCon Run-time Interface

Click an output to manually toggle its state (on/off). Hold down CTRL and click an output to

'mute' it. This prevents Pynapse from triggering the output.

Output Methods

All output methods have the form p_Rig.{OUTPUT_NAME}.{METHOD} . Type p_ in the Pynapse

Code Editor and let the code completion do the work for you. The name of each method gets

replaced with the name of your actual output, so if you name the output 'Reward' then

p_Rig.Reward.fire() is an available method.

iCon Outputs | 32

Manual Control

Manual turn outputs on, off, or fires a pulse waveform during runtime. Useful for stimulus/

reward presentation.

fire

This is only available if Triggered Pulse is selected.

Quickly pulse the output. If Duration is non-zero, the output will stay high for that set duration.

Set Duration to zero to trigger a single sample pulse.

Trigger an output when the input goes high.

turnOn

Turn the output on indefinitely. This is only available if Triggered Pulse is not selected.

Link an input status to an output.

p_Rig.MyOutput.fire()

Example

class Always: #StateID = 0

 def s_MyInput_pass():
 p_Rig.MyOutput.fire()

p_Rig.MyOutput.turnOn()

Example

class Always: #StateID = 0

 def s_MyInput_rise():
 p_Rig.MyOutput.turnOn()

 def s_MyInput_fall():
 p_Rig.MyOutput.turnOff()

iCon Outputs | 33

https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#logic-output-processor
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#logic-output-processor

turnOff

Turn the output off. This is only available if Triggered Pulse is not selected.

Link an input status to an output.

setMute

Mute the output so it can't trigger, or unmute it.

Duration Settings

setDuration

Override the output Duration setting. This is only available if Triggered Pulse is enabled and

Duration is greater than 0.

p_Rig.MyOutput.turnOff()

Example

class Always: #StateID = 0

 def s_MyInput_rise():
 p_Rig.MyOutput.turnOn()

 def s_MyInput_fall():
 p_Rig.MyOutput.turnOff()

p_Rig.MyOutput.setMute(muted)

Inputs Type Description

muted bool Change the output mute status (True/False or 1/0)

p_Rig.MyOutput.setDuration(dur_sec)

Inputs Type Description

dur_sec float Duration of the output pulse when triggered with fire , in seconds

iCon Outputs | 34

https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#logic-output-processor
https://www.tdt.com/docs/synapse/hardware/icon-behavioral-control-interface/#logic-output-processor

Modify the pulse shape and output value based on performance.

Status

Get information on the current state of the output.

isOn

Returns true if the output is currently true.

When entering a state, check if an output is already true.

isOff

Returns true if the output is currently false.

Example

def s_State_enter():
 # if more than 5 successful trials, decrease the output pulse time by 50 ms.
 if p_Metric.success.read() > 5:
 p_Metric.pulse_dur.dec(delta=0.05)
 p_Rig.MyOutput.setDuration(p_Metric.pulse_dur.read())

p_Rig.MyOutput.isOn()

Example

def s_state_enter():
 if p_Rig.MyOutput.isOn():
 print('MyOutput is on')
 else:
 print('MyOutput is off')

p_Rig.MyOutput.isOff()

iCon Outputs | 35

When entering a state, check the status of the output.

iMn Output Settings

The iMn has analog outputs. These functions override the analog output settings at runtime.

See iMn Analog Outputs for more information.

setAtten

Set the output Attenuation, in dB. This is only available if Waveform Shape is User, Tone, White

Noise, Pink Noise, Square, Clock, or PWM.

setFreq

Set the output Frequency, in Hertz. This is only available if Waveform Shape is Tone, Square, or

Clock.

Example

def s_state_enter():
 if p_Rig.MyOutput.isOff():
 print('MyOutput is off')
 else:
 print('MyOutput is on')

p_Rig.MyOutput.setAtten(v)

Inputs Type Description

v float Set the output attenuation, in dB

p_Rig.MyOutput.setFreq(v)

Inputs Type Description

v float Set the output frequency, in Hz

iCon Outputs | 36

https://www.tdt.com/docs/synapse/hardware/icon-imn/#analog-outputs
https://www.tdt.com/docs/synapse/hardware/icon-imn/#analog-outputs
https://www.tdt.com/docs/synapse/hardware/icon-im10/#analog-outputs

setVolt

Set the output voltage, in Volts. This is only available if Waveform Shape is DC Voltage.

setDutyCycle

Set the duty cycle percentage, from 0 to 100. This is only available if Waveform Shape is PWM.

p_Rig.MyOutput.setVolt(v)

Inputs Type Description

v float Set the output voltage, in V

p_Rig.MyOutput.setDutyCycle(v)

Inputs Type Description

v float Set the output period, in ms

setPeriod

Set the output period, in ms. This is only available if Waveform Shape is PWM.

setWidth

Set the output width, in ms. This is only available if Waveform Shape is PWM.

Deprecated after v96

p_Rig.MyOutput.setPeriod(v)

Inputs Type Description

v float Set the output period, in ms

p_Rig.MyOutput.setWidth(v)

Inputs Type Description

v float Set the output width, in ms

iCon Outputs | 37

https://www.tdt.com/docs/synapse/hardware/icon-imn/#analog-outputs
https://www.tdt.com/docs/synapse/hardware/icon-imn/#analog-outputs
https://www.tdt.com/docs/synapse/hardware/icon-imn/#analog-outputs
https://www.tdt.com/docs/synapse/hardware/icon-imn/#analog-outputs

iS9 Output Settings

The iS9 sends a stimulation current. These functions override the output settings at runtime.

See iS9 Stim Outputs for more information.

setStimCurrent

Set the output current, in mA. This value ranges from 0.1 to 2.5 mA.

p_Rig.MyOutput.setStimCurrent(v)

Inputs Type Description

v float Set the output current, in mA

iCon Outputs | 38

https://www.tdt.com/docs/synapse/hardware/icon-is9/#stim-outputs

States

Pynapse has an internal state machine that logs all events and keeps track of the current state.

New triggers coming in are filtered through this state machine, so that only the slot methods

associated with the current state can run.

There is a special 'Always' state - slot methods in the Always state can trigger on any polling

loop. This is a useful state to add user mode controls (start/pause/stop).

States are 'classes' in the Python code that have the special comment #StateID = ? at the

end of the class definition. The number defined here is the id number associated with this

state. This value will be timestamped and stored with the data in the data tank. If the parser

finds a ? , it will automatically assign a number for you. Otherwise enter an integer to lock the

StateID in place, for example #StateID = 555 .

See Working with StateIDs for more information.

Slot Methods for Responding to State Changes

These state slots capture state machine changes. They are available as method definitions

inside Pynapse states, including the Always state. Write a method with this name to react to

the corresponding event.

Slot name Event

s_State_change Triggers on any state change

s_State_enter Triggers once when the state begins

s_State_exit Triggers once when the state ends

s_State_timeout Triggers when the state timeout is reached

States | 39

Turn on an output only while in a particular state.

In this example, use s_State_change() to track order of state execution. Suppose there are many states that exit

to TargetState. If the state that exited to TargetState is TargetOldState, we want to do something.

State Timeouts

The Pynapse state machine has a built-in Timer that is used as a timeout within the current

state that moves to another state if it fires. Timeouts are usually set in the s_State_enter() slot

method but can be set anywhere in the State. Timeouts can also be canceled.

Example

class StartTrial: # StateID = ?
 # turn on MyOutput when entering state
 def s_State_enter():
 p_Output.MyOutput.turnOn()

 # when MyInput passes 'Time to Active', switch to ActiveState
 def s_MyInput_active():
 p_State.switch(ActiveState)

 # turn off MyOutput when exiting state
 def s_State_exit():
 p_Output.MyOutput.turnOff()

class ActiveState: # StateID = ?
 # when MyInput passes 'Time to Pass', switch to PassState
 def s_MyInput_pass():
 p_State.switch('PassState')

def s_MyInput1_fail():
 p_State.switch(FailState)

class Always: # StateID = 0
 def s_State_change(newstateidx, oldstateidx):
 print('new state', newstateidx, 'old state', oldstateidx)
 if newstateidx == TargetState and oldstateidx == TargetOldState:
 print('do something')

States | 40

If the user fails to press a button (MyInput) within five seconds, we want to move to a NoTrial state and wait there

for ten seconds before starting a new trial.

Methods

All state methods have the form p_State.{METHOD} . Type p_ in the Pynapse Code Editor and

let the code completion do the work for you.

State Control

switch

Tell Pynapse to move to a new state. All states are python 'classes'. The input to switch can

be either the class or the string class name you want to switch to. See the example below

Example

class StartTrial: # StateID = ?

 # if no input is received after 5 seconds, switch to NoTrial state
def s_State_enter():

 p_State.setTimeout(5, NoTrial)

 def s_MyInput_rise():
 p_State.switch(TrialState)

class NoTrial: # StateID = ?
 # wait 10 seconds, return to StartTrial
 def s_State_enter():
 p_State.setTimeout(10, StartTrial)

class TrialState: # StateID = ?
 # turn on an output
 def s_State_enter():
 p_Output.MyOutput.turnOn()

p_State.switch(newstate)

Inputs Type Description

newstate class or string Name of new class to switch to

States | 41

Switch between states when MyInput goes high.

setTimeout

Switch to a default state after a certain period of time.

The function that contains the switch command does not exit immediately after switching the internal state.

This can have unintended consequences, particularly if you are using the Sync to State Change option for outputs

or timers. Best practice is to use the switch command last, right before the function exits.

See Synchronizing Events for information.

Note

Example

class StartTrial: # StateID = ?

 def s_MyInput_active():
 p_State.switch(ActiveState)

class ActiveState: # StateID = ?
 def s_MyInput_pass():
 # you can also switch states with a string name
 p_State.switch('PassState')

 def s_MyInput_fail():
 p_State.switch(FailState)

p_State.setTimeout(secs, stateOnTimeout)

Inputs Type Description

secs float Timeout duration in seconds

stateOnTimeout class or string New of the class to switch to

There can only be one active timeout per state. If you need to set a new timeout within the state, use the

cancelTimeout method first.

Important

States | 42

Toggle between the FirstState and SecondState until MyInput rises in FirstState.

cancelTimeout

Cancel the current timeout. Can be called anywhere within the state.

Example

class FirstState: # StateID = ?

 # if no input is received in 5 seconds, switch to SecondState
 def s_State_enter():
 p_State.setTimeout(5, SecondState)

 def s_MyInput_rise():
 p_State.switch(EndState)

class SecondState: # StateID = ?

 # wait 5 seconds, return to FirstState
 def s_State_enter():
 p_State.setTimeout(5, FirstState)

class EndState: # StateID = ?
 def s_State_enter():
 print('done')

p_State.cancelTimeout()

States | 43

Give the subject 15 seconds to press MyInput 10 times. If successful, cancel the state timeout and give the

subject unlimited time to reach 20 presses before moving to the success state.

Status

isCurrent

Check if the current state is the given name. This is useful if you have a lot of States defined

but want to do similar actions in multiple states for a given slot method. You can move the

logic into the Always state and avoid repeating yourself. See the example below.

Or if you want to

Example

class TrialState: # StateID = ?
 def s_State_enter():
 # reset counter

p_Global.count.write(0)

 # if target isn't reached in 15 seconds switch to DefaultState
 p_State.setTimeout(15, DefaultState)

 def s_MyInput_rise():
 # increment counter
 p_Global.count.inc()

 # if we reached our first target, cancel timeout
 if p_Global.count.read() == 10:
 p_State.cancelTimeout()
 elif p_Global.count.read() == 20:
 p_State.switch(SuccessState)

class DefaultState: # StateID = ?
 def s_State_enter():
 print('default')

class SuccessState: # StateID = ?
 def s_State_enter():
 print('success')

p_State.isCurrent(stname)

Inputs Type Description

stname class or string Name of state to check

States | 44

In a long list of states, we want to turn the MyOutput on in just two of them.

In this second example, the target state is dynamically set by a global variable. When MyInput2 turns on, the slot

method is captured in the Always state and only continues (turns on Output2) if the current state matches the

target state. This target state can be set on the user interface or somewhere else in the code using the Globals

asset. This could also be tied to a Control asset.

isNotCurrent

Check if the current state is not given name. This is useful if you have a lot of States defined

but don't want to include the same identical slot method in all of them except a small number

of states. You can include this logic check within the Always state. See the example below.

When MyInput turns on, turn on MyOutput in all states unless we're in the DontStim state.

Example

class Always: #StateID = 0
 def s_MyInput1_rise():
 if p_State.isCurrent(State8) or p_State.isCurrent(State20):
 p_Output.MyOutput.turnOn()

 class Always: #StateID = 0
 def s_MyInput2_rise():
 if p_State.isCurrent(p_Global.target_state.read()):
 print('current state is the target state set in the user interface')
 p_Output.MyOutput2.turnOn()

p_State.isNotCurrent(stname)

Inputs Type Description

stname class or string Name of state to check

Example

class Always: #StateID = 0
 def s_MyInput_rise():
 if p_State.isNotCurrent(DontStim):
 p_Output.MyOutput.turnOn()

States | 45

Timers

Timers are used independently of states to control program flow or stimulus presentation.

The period and number of repeats can be modified at runtime within the Python code.

Control Modes

There are two Control types, Trigger and Enable.

In Trigger mode, you initiate the timer with the start method and it runs until it has reached

the set number of Repeats (or indefinitely if Repeats is set to -1).

In Enable mode, you turn the timer on and off with the turnOn / turnOff method pairs.

Timers Tab

See Synchronizing Events for information on the Sync to State Change option.

Timers | 46

Pulse Control

The Timer can operate in two modes, Standard and Early Pulse , depending on the state of

the Early Pulse checkbox.

Standard

In standard mode, the tick event and the timer output fires after one timer period has

passed. Use this to time events starting from when you first turn the timer on with the start

or turnOn method.

Standard Flow Diagram

Early Pulse

In Early Pulse mode, the tick event and the timer output fires immediately after you call the

start or turnOn method (or when the next state change happens if Sync to State Change is

enabled). Use this to start timed stimulus presentations immediately.

Timers | 47

Early Pulse Flow Diagram

Slot Methods for Responding to Timer Ticks

These slot methods capture status information about the timers. They are available as method

definitions inside Pynapse states for each timer. Write a method with this name to react to the

corresponding event.

The timer slot method has the form s_{TIMER_NAME}_tick . Type def s_ in the Pynapse Code

Editor and let the code completion do the work for you.

In Trigger mode, Repeats must have a value greater than 1 to enable the Early Pulse checkbox.

Note

Slot name Event

s_MyTimer1_tick Fires on each tick of MyTimer1 . See Pulse Control for the flow diagram

Timers | 48

Methods

All control methods have the form p_Timer.{TIMER_NAME}.{METHOD} . Type p_ in the Pynapse

Code Editor and let the code completion do the work for you.

Setup

setPeriod

Set the period between timer ticks.

Set a timer that fires once per second for 10 seconds, and print the current timer count when it fires

In this example, Synapse stops the recording after 10 seconds and switches to Idle.

Example

class Always: # StateID = 0
 def s_Mode_standby():
 p_Timer.MyTimer.setPeriod(1)
 p_Timer.MyTimer.setRepeats(10)

 def s_Mode_recprev():
 p_Timer.MyTimer.turnOn()

 def s_Timer1_tick(count):
 print(count)

class Always: # StateID = 0
 def s_Mode_standby():
 p_Timer.MyTimer.setPeriod(10)
 p_Timer.MyTimer.setRepeats(1)

 def s_Mode_recprev():
 p_Timer.MyTimer.turnOn()

 def s_Timer1_tick(count):
 print('done')
 syn.setModeStr('Idle')

p_Timer.MyTimer.setPeriod(period_sec)

Inputs Type Description

period_sec number New period, in seconds

Timers | 49

setRepeats

Set the number of ticks before the timer finishes, when timer is in Trigger mode. Can be -1 to

run indefinitely.

Control

turnOn

Start a timer that has Control mode set to Enable. This call is required to start any timer in

Enable mode.

turnOff

Stop a timer prematurely. This only works with timers that have Control mode set to Enable.

start

Start a timer that has Control mode set to Trigger. This call is required to start any timer in

Trigger mode.

p_Timer.MyTimer.setRepeats(reps)

Inputs Type Description

reps number Number of times to repeat the timer tick

p_Timer.MyTimer.turnOn()

p_Timer.MyTimer.turnOff()

p_Timer.MyTimer.start()

Timers | 50

Status

Get information on the current state of the timer.

getCount

Returns the number of times the timer has fired. See Pulse Control for a flow chart example.

n_ticks = p_Timer.MyTimer.getCount()

Timers | 51

Controls

You can create several kinds of run-time widgets and read/ write the values of the widget

during the experiment. Controls will issue a trigger when their value is changed. This event is

captured in the Pynapse event loop. You can also read the value of the controls inside any

Python method.

Controls Tab

Controls | 52

Runtime Tab Showing Example Controls

You can add up to 50 custom controls. Right-click on the 'Main' page to add new controls. Drag

and drop the controls in the tree to set the order they are displayed at runtime. Right-click on

'Main' to add a new page of controls. Controls will be organized into tabs at runtime.

Runtime Control Tab Example

Controls | 53

Phase Presets

User-adjustable controls (Toggle Switch, Spin Control, Slider Control, and Combo Box) can be

assigned preset values for different phases of the experiment, so you can quickly change

several controls with the click of a button. When combined with Session Controls you can tell

the Pynapse scheduler how many trials / blocks of each phase you want to run and it

automatically handles it for you. The Session Scheduler takes this one step further and allows

you to schedule the sequence of phase preset conditions to run in order.

Check the Phase Presets box to enable this feature and make a comma-separated list with

your own custom phase name. Check the Preset Controlled option on any control you want to

add to the presets.

Assign controls to phases

At run-time, the phase presets appear as buttons. Setup the control values that you want, then

right-click on one of the phase buttons and select 'Store To Preset' to assign those values to

that button. The button text changes to black to indicate preset values have been assigned,

and the button outline changes to blue to indicate it is currently selected.

Phase buttons: assigned, selected, and undefined

Controls | 54

Right-click on a phase button for more options:

Locking

Choose when to lock controls during the experiment.

Option Description

Clear Preset Clear the selected preset, leaving it undefined

Store to Preset Overwrite the selected phase values with the current control settings

Load from Preset Overwrite the current control values with the selected phase values

The Lock icon next to the icon at runtime must be locked in order for this setting to take effect. The Lock icon is

unlocked by default in Preview mode, and locked by default in Record mode.

Slider control in unlocked and locked state

Note

Option Description

Normal Control value is locked when the Lock icon is locked and Pynapse is in an active Session, so it can't be

adjusted by the user during critical moments of the experiment

Never Control value can always be adjusted by the user at any time during the experiment, regardless of Lock

icon state

Always Control value can't be changed at any time the Lock icon is locked

Controls | 55

Slot Methods for Responding to Control Changes

This control slot method captures status information about the controls. It is available as

method definitions inside Pynapse states for each control. Write a method with this name to

react to the corresponding event.

All custom control slot methods s_{CONTROL_NAME}_change . Type def s_ in the Pynapse

Code Editor and let the code completion do the work for you.

Methods

All control methods have the form p_Control.{CONTROL_NAME}.{METHOD} . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you.

Status

read

Read the current value of the control. For combo box controls, the value is the index into the

list of items in the combo box.

Slot name Event

s_MyControl_change MyControl value changed

Print a slider value when it is changed at runtime.

Example

class Always: # StateID = 0

 # capture any control value change with this
 def s_MyControl_change(value):
 print('new control value', value)

value = p_Control.MyControl.read()

Controls | 56

Set the next stimulation based on a slider value controlled by the user at runtime.

Control

write

Write a new value to the control. For combo box controls, the value is the index into the list of

items in the combo box. For Led Indicators, the value is the index into the list of colors.

Increment a progress bar.

Example

class PrepStim: #StateID = 0
 def s_State_enter():
 # get next stim ready
 wave_freq = p_Control.MyControl.read()
 p_Param.p_Param.WaveFreq_write(wave_freq)

p_Control.MyControl.write(val)

Inputs Type Description

val number New value of the control

Example

class EndTrial: #StateID = 0
 def s_State_enter():

 # increment completed trials counter
 p_Metric.completed_trials.inc()

 # update progress bar
 progress = 100 * p_Metric.completed_trials.read() / p_Metric.desired_trials.read()
 p_Control.MyProgressBar.write(progress)

Controls | 57

lock

Lock the control to prevent modification.

Lock control during a portion of the experiment

unlock

Unlock the control to allow modification.

Unlock control during a portion of the experiment

setRange

Set the value range of the control between minv and maxv. This is only valid for Spin Control,

Slider Control, and Progress Bar controls.

p_Control.MyControl.lock()

Example

class StartTrial: #StateID = 0
 def s_State_enter():
 p_Control.MyControl.lock()

p_Control.MyControl.unlock()

Example

class EndTrial: #StateID = 0
 def s_State_enter():
 p_Metric.completed_trials.inc()
 p_Control.MyControl.unlock()

p_Control.MyControl.setRange(minv, maxv)

Inputs Type Description

minv number New minimum value for this control

maxv number New maximum value for this control

Controls | 58

setLabel

Sets the text label of the control.

hide

Hides the control on the user interface.

show

Shows the control on the user interface.

p_Control.MyControl.setLabel(txt)

Inputs Type Description

txt string New label text

p_Control.MyControl.hide()

p_Control.MyControl.show()

Controls | 59

Sessions

Session Mode Controls

Session Mode Controls allow you to schedule the number of trials and blocks to run. It triggers

the trial, block, and session Metrics to save, display, and plot. It also includes a Scheduler

which can automatically present different phases of the experiment with minimal user

interaction.

Enable Session Controls in the Controls tab.

Session Control Options

The Session Mode Controls add a run-time interface to start, stop, pause, resume the session.

Scheduler controls also appear at run-time. A session counter, block counter, and trial counter

are also on the interface.

Session Runtime Controls

See Slot Methods for Responding to Session Changes for an example of how these might be

used in your Python code.

Sessions | 60

Flow Control

The three Flow Control methods are described below. The diagrams show the session flow

based on when the python Trial Control methods (colored ovals) are called. The tables show

when the Status information methods return true (black in the timeline).

Automatic

In Automatic mode, the session starts immediately when you click the 'Start' button. You only

need to call p_Session.startTrial() in your Python code during an active session and the

scheduler will automatically increment the trial and block counters for you, based on the

number of trials that have already occurred.

Sessions | 61

Automatic with SyncDelay

In Automatic with SyncDelay mode, the phase is loaded when the current trial completes and

the session starts after one full trial has finished after that. You only need to call

p_Session.startTrial() in your Python code during an active session and the scheduler will

automatically increment the trial and block counters for you, based on the number of trials that

have already occurred.

Manual

In Manual mode, you manually call p_Session.startBlock() and p_Session.startTrial()

in the Python code during an active session to advance the trial and block counters. You can

use the mode controls at the top of the runtime interface or call p_Session.startSession()

and p_Session.stopSession() in the Python code.

Sessions | 62

You can also optionally call p_Session.endTrial() to add a gap between trials. This call ends

the trial and logs the trial metrics before starting the next trial. You can use this time to make a

decision before the next trial begin.

Sessions | 63

isBlockStarting and isBlockEnding turn on when the trial count is reached.

isSessionEnding turns on when the block count and trial count are reached.

Note

Sessions | 64

Scheduler

If you are using one of the 'Automatic' flow control methods and are using Phase Presets, then

a run-time Scheduler manages the experiment flow. It is programmed with a list of phases and

the number of trials and blocks to run for each phase.

Session Scheduler Controls

Enter the Phase ID (e.g. P1, P2) into the input boxes to set the scheduler. When the specified

number of blocks and trials for the current phase has finished, the scheduler will automatically

advance to the next phase in the list.

Session Scheduler Phase List

Enter the Phase ID, number of trials, and number of blocks as a comma-separated list to

override the default trial and block count.

Sessions | 65

Session Scheduler Trial and Block Specification

Click the arrow button to end the current phase and start the next phase immediately on the

next trial. The arrow button will turn red. Click it again before the next trial starts to undo this

operation.

Session Scheduler Override

Slot Methods for Responding to Session Changes

These control slot methods capture status information about the session. They are available

as method definitions inside Pynapse states. Write a method with this name to react to the

corresponding event.

Slot name Event

s_Session_start Start button pressed, or p_Session.startSession() called

s_Session_pause Pause button pressed, or p_Session.pauseSession() called

s_Session_resume Resume button pressed, or p_Session.resumeSession() called

s_Session_stop Stop button pressed, or p_Session.stopSession() called

Sessions | 66

Methods

All state methods have the form p_Session.{METHOD} . Type p_ in the Pynapse Code Editor

and let the code completion do the work for you.

Session Control

startSession

Mimics the behavior of clicking the 'Start' button.

The s_Session methods are only available if Session Mode Controls is enabled in the Controls tab.

Important

Switch to a starting state when user clicks the 'Start' button on the Pynapse tab at runtime.

Example

class Always: # StateID = 0
 def s_Session_start():
 p_Metric.count.write(0)
 p_State.switch(PreTrial)

 def s_Session_pause():
 p_Metric.count.write(0)
 p_State.switch(Resting)

 def s_Session_resume():
 p_State.switch(PreTrial)

 def s_Session_stop():
 print(p_Metric.ntrials.read(), 'trials completed')
 p_State.switch(EndTrials)

Sessions | 67

pauseSession

Mimics the behavior of clicking the 'Pause' button.

resumeSession

Mimics the behavior of clicking the 'Resume' button.

stopSession

Mimics the behavior of clicking the 'Stop' button.

disabManSessionControl

Disables the Start/Stop/Pause/Resume buttons on the run-time interface.

enabManSessionControl

Enables the Start/Stop/Pause/Resume buttons on the run-time interface.

p_Session.pauseSession()

p_Session.resumeSession()

p_Session.stopSession()

p_Session.disabManSessionControl()

p_Session.enabManSessionControl()

Sessions | 68

Trial Control

setTrialMax

Write a new maximum trial number. This should be an integer.

setBlockMax

Write a new maximum block number. This should be an integer.

startTrial

Begin the next trial in the session.

startBlock

Begin the next block in the session.

p_Session.setTrialMax(tmax)

Inputs Type Description

tmax integer New value assigned to trial max

p_Session.setBlockMax(bmax)

Inputs Type Description

bmax integer New value assigned to block max

p_Session.startTrial()

p_Session.startBlock()

Sessions | 69

endTrial

End the current trial in the session.

Status

getTrialMax

Read the maximum trial number (integer).

getBlockMax

Read the maximum block number (integer).

curTrial

Read the current trial number (integer).

curBlock

Read the current block number (integer).

p_Session.endTrial()

p_Session.getTrialMax()

p_Session.getBlockMax()

p_Session.curTrial()

p_Session.curBlock()

Sessions | 70

curSession

Read the current session number (integer).

isBlockStarting

See Flow Control to see when this returns true during the session.

isBlockEnding

See Flow Control to see when this returns true during the session.

isBlockNew

See Flow Control to see when this returns true during the session.

isSessionStarting

See Flow Control to see when this returns true during the session.

isSessionEnding

See Flow Control to see when this returns true during the session.

p_Session.curSession()

p_Session.isBlockStarting()

p_Session.isBlockEnding()

p_Session.isBlockNew()

p_Session.isSessionStarting()

p_Session.isSessionEnding()

Sessions | 71

isSessionActive

See Flow Control to see when this returns true during the session.

isBlockActive

See Flow Control to see when this returns true during the session.

isTrialActive

See Flow Control to see when this returns true during the session.

Timers

markTime

Start a custom timer (up to four can be used).

sinceRecordStart

Read the elapsed time since the recording began.

p_Session.isSessionActive()

p_Session.isBlockActive()

p_Session.isTrialActive()

p_Session.markTime(idx=1)

Inputs Type Description

idx integer Timer index (1 to 4)

ts = p_Session.sinceRecordStart()

Sessions | 72

sinceSessionStart

Read the elapsed time since the current session began.

sinceBlockStart

Read the elapsed time since the current block began.

sinceTrialStart

Read the elapsed time since the current trial began.

sinceTrialEnd

Read the elapsed time since the last trial ended.

sinceMark

Read a custom timer that was started with markTime .

ts = p_Session.sinceSessionStart()

ts = p_Session.sinceBlockStart()

ts = p_Session.sinceTrialStart()

ts = p_Session.sinceTrialEnd()

ts = p_Session.sinceMark(idx=1)

Inputs Type Description

idx integer Timer index (1 to 4)

Sessions | 73

Metrics

Metrics are global variables you can read/write in your Python logic code. They can also be

added to the runtime interface for visual display, logged at certain time points in the trial, and

plotted.

A metric can be any python object. This is similar to using the global keyword in Python,

except that by storing it as a Pynapse asset you can use the methods below to read and

modify it, and all of the logging and display/plotting is taken care of for you.

Give each variable a name and a default value in the Metrics Tab. If Session Controls are

enabled, you can assign a metric to trials, blocks, or sessions. You can add up to 50 metrics.

Metrics Tab

Metrics | 74

Run-time Interface

The Metrics run-time interface can have two elements, the ledger and plot windows. Metrics

are organized by scope - Session, Block, Trial, or Global.

Ledger

Option Description

Reset* Reset the metric to 0 after the session event

Log Determine if and when to log the metric, if User Log File is enabled in the General Tab. See Metric

Logging for more information.

Ledger Show string representation in the runtime UI, if Run-time Ledger Window is enabled. See Ledger

below.

Broadcast Include the metric in the broadcast UDP packet, if UDP Broadcast is enabled on the General Tab. See

UDP for more information.

Plotting Choose the plot shape and color, if Run-time Plot Window is enabled. All metrics in the same scope

are plotted together. See Plotting below.

*The metric resets 'on Trial Begin' after the function that calls startTrial exits. In the example below, the

MinPress metric will be 0 after s_State_enter finishes and won't have the desired value. When manually setting

metrics, turn off the 'Reset' option.

Important

class StartTrial: # StateID = ?
 def s_State_enter():
 p_Session.startTrial()
 p_Metric.MinPress.write(random.randint(5,10))

Metrics | 75

Metrics Ledger Option

Metrics with the Ledger option selected appear on the ledger. The numbers on the ledger

indicate the {SESSION}.{BLOCK}.{TRIAL} for that entry. New blocks / trials are indicated with

a - . The Run-time Ledger Window setting organizes the metric panes either vertically or

horizontally by default. The layout can be changed at run-time.

Metrics | 76

Metrics Ledger Interface

Metrics | 77

Plotting

Metrics Plot Option

Button Description

Organize metrics into columns

Organize metrics into rows

Organize metric panes horizontally

Organize metric panes vertically

Show all Session, Block, and Trial metrics in the Global list as well.

There must be at least one Global metric in the ledger to see this button

Metrics | 78

Enable Run-time Plot Window and choose the plot shape and color. Metrics are organized in

the plots by their scope. Darker gray vertical bars represent new sessions. Lighter gray vertical

bars represent new blocks.

If you have multiple metrics in the same scope and need two axes to represent the data in a

meaningful way, use the Y-axis Left/Right setting to plot metrics on two different axes on the

same plot. Each metric has an option to choose which of the two axes to use.

Metrics Plot Interface

Metrics | 79

Adjusting the plots

Hover near the axis you want to change and use the mouse to change the zoom and scale. The

mouse cursor will change to a vertical or horizontal axis with a finger pointed in the direction of

the axis as you get near.

Left-click and drag to change the axis offset. Hold CTRL + left-click and drag, or move the

mouse wheel, to change axis zoom. Here is the full list of cursors and actions:

Button Description

Organize plot panes horizontally, with Global at the bottom

Organize plot panes vertically

Stop plots from updating, for review

Resume updating plots

Metrics | 80

Cursor Mouse Action Description

None Bottom axis is currently targeted

Left-click + drag Change bottom axis offset

CTRL + left-click + drag, or mouse wheel Zoom bottom axis

None Left axis is currently targeted

Left-click + drag Change left axis offset

CTRL + left-click + drag, or mouse wheel Zoom left axis

None Right axis is currently targeted

Left-click + drag Change right axis offset

CTRL + left-click + drag, or mouse wheel Zoom right axis

Metrics | 81

Methods

All metric methods have the form p_Metric.{METRIC_NAME}.{METHOD} . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you.

Status

read

Read the current value of a metric variable.

Control

write

Write a new value to the metric variable. This can be any python object.

inc

Increment the metric value by delta (default is 1).

value = p_Metric.varname.read()

p_Metric.varname.write(value)

Inputs Type Description

value python object New value assigned to global variable

p_Metric.varname.inc(delta=1)

Inputs Type Description

delta number Amount to increase variable value (default=1)

Metrics | 82

dec

Decrement the metric value by delta (default is 1).

scale

Scales the metric value by sf.

round

Rounds the metric to ndec decimal places.

Data Conversion

toFloat

Convert the metric value to a floating point number for math operations

p_Metric.varname.dec(delta=1)

Inputs Type Description

delta number Amount to decrease variable value (default=1)

p_Metric.varname.scale(sf)

Inputs Type Description

sf number Amount to scale variable value

p_Metric.varname.round(ndec)

Inputs Type Description

ndec integer Decimal places

p_Metric.varname.toFloat()

Metrics | 83

toInt

Convert the metric value to an integer number for math operations

toString

Convert the metric value to a string.

toPretty

Convert the metric value to a string containing its name and value. Useful for displaying to the

console

p_Metric.varname.toInt()

p_Metric.varname.toFloat()

p_Metric.varname.toPretty()

Example

p_Metric.varname.write(1)

prints 'varname=1'
print(p_Metric.varname.toPretty())

Metrics | 84

Logs

Log files can be saved alongside the experiment files. Enable logs on the General Tab.

Log Options

Control values, Metric values, Session information, and custom text can be written to the log.

The log files are saved in the data block folder with the name {GIZMO_NAME}_user_log.

{FILE_FORMAT} . The file format can be a tab-delimited TXT file, or a comma-separated CSV

file.

All log entries except for raw user text contain a log number and timestamp. Enable

Companion Epoc to also capture the log number and timestamp in the data block as an epoc

event.

Control Logging

Control values can be automatically logged when they change value. If Session Controls are

enabled, the values can also be logged when a new Session, a new Block, or a new Trial starts.

They can also be logged manually with the writeControlValue method.

Logs | 85

Control Log Options

Metric Logging

Metric values can be automatically logged when they change value. If Session Controls are

enabled and the metric is categorized as a Session, Block, or Trial metric, then the metric value

can also be logged at the end of that time period. They can also be logged manually with the

writeMetricValue method.

22 4.013 CONTROL: Frequency 1000

This is an ID number, timestamp, type, control name, and value.

Example output line in the log file

Logs | 86

Metrics Log Options

Session Logging

Session information (when new sessions, blocks, and trials start) can be logged automatically.

This includes the start of a session, block, or trial, or when a session resumes.

6 2.131 METRIC: Correct 3

This is an ID number, timestamp, type, metric name, and value.

Example output line in the log file

Logs | 87

Session Log Options

Block and trial start logs contain the block/trial number. Session start logs contain the name of

the phase and the number of trials / blocks defined at the start of the session.

Custom Text Logging

Use writeSessionEntry to add timestamped notes to the log file.

Use writeRawText to add raw text to the file with no numbers or timestamps.

For sessions, this is an ID number, timestamp, event name, event type, and phase information. For blocks and

trials, this is an ID number, timestamp, event name, event type, and counter value.

Example output line in the log file

1 0.641 SESSION: Start P* 5 2
2 1.505 BLOCK: Start 1
4 1.507 TRIAL: Start 1
5 1.629 TRIAL: Start 2
6 2.145 TRIAL: Start 3
7 2.288 TRIAL: Start 4
8 2.461 TRIAL: Start 5
9 2.602 BLOCK: Start 2
11 2.604 TRIAL: Start 1
12 2.762 TRIAL: Start 2
13 2.949 TRIAL: Start 3
14 3.122 TRIAL: Start 4
15 3.294 TRIAL: Start 5

12 1.265 USER: my user notes

This is an ID number, timestamp, type, and string value.

Example output line in the log file

Logs | 88

Methods

All log methods have the form p_Log.{METHOD} . Type p_ in the Pynapse Code Editor and let

the code completion do the work for you.

writeControlValue

Write a timestamped control value to the log file.

writeMetricValue

Write a timestamped metric value to the log file.

writeRawText

Write raw text to the log file. Make sure to add the newline character (\n) at the end of the

string to advance the log file to the next line.

raw text with no formatting

This is just the string value

Example output line in the log file

p_Log.writeControlValue(cname)

Inputs Type Description

cname string name of control to write to log file

p_Log.writeMetricValue(mname)

Inputs Type Description

mname string name of metric to write to log file

p_Log.writeRawText(strg)

Inputs Type Description

strg string raw text to write to log file

Logs | 89

writeSessionEntry

Write a custom timestamped entry to the log file.

p_Log.writeSessionEntry(strg)

Inputs Type Description

strg string raw text to write to log file

Logs | 90

UDP

UDP Broadcast allows you to send information from Pynapse to client software. Control

values, Metric values, Session-related text, and custom text can be sent on the network. Enable

UDP Broadcast on the General Tab.

UDP Broadcast Options

Client classes for MATLAB and Python are available in the MATLAB and Python SDKs. See

Programming Guide.

All UDP broadcast entries except for raw user text contain the session, block, and trial number.

Control Packet

Control values can be broadcast manually with the sendControlValue method.

Metric Packet

Metric values can be automatically broadcast when they change value. If Session Controls are

enabled and the metric is categorized as a Session, Block, or Trial metric, then the metric value

can also be broadcast at the end of that time period. They can also be broadcast manually

with the sendMetricValue method.

[1.1.2] Frequency=1000

Example output

UDP | 91

Metrics UDP Options

Custom Text Packet

Use sendSessionEntry to send text with the current session, block, and trial number.

Use sendRawText to send raw text (with or without a timestamp since the start of the

recording).

[1.3.4] Correct=2

Example output

[2.1.2] my custom text

Example output

UDP | 92

Methods

All UDP methods have the form p_Udp.{METHOD} . Type p_ in the Pynapse Code Editor and let

the code completion do the work for you.

sendControlValue

Broadcast a control value to the network prefixed with the current session, block, and trial

number.

sendMetricValue

Broadcast a metric value to the network prefixed with the current session, block, and trial

number.

Example output

with timestamp
00:09.91 raw text with no formatting

without timestamp
raw text with no formatting

p_Udp.sendControlValue(cname)

Inputs Type Description

cname string name of control to write to log file

p_Udp.sendMetricValue(mname)

Inputs Type Description

mname string name of metric to write to log file

UDP | 93

sendRawText

Broadcast a custom string to the network.

sendSessionEntry

Broadcast a custom string to the network prefixed with the current session, block, and trial

number.

Programming Guide

MATLAB

You can download the latest MATLAB SDK files here.

The PynapseUDP class installs to:

Example scripts install to:

p_Udp.sendRawText(strg, withTimeStamp=False)

Inputs Type Description

strg string raw text to write to broadcast

withTimeStamp bool set True to include timestamp in the broadcast packet

p_Udp.sendSessionEntry(strg)

Inputs Type Description

strg string raw text to write to log file

C:\TDT\TDTMatlabSDK\TDTSDK\UDP

C:\TDT\TDTMatlabSDK\Examples\UDP

UDP | 94

https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-matlab/getting-started/

Reading from Pynapse UDP

Python

The Python PynapseUDP class interfaces with Pynapse. It is available in the tdt pypi package

(pip install tdt).

Reading from Pynapse UDP

% instance of class that reads Pynapse UDP
u = PynapseUDP();

while 1
 % block until next UDP packet received
 u = u.read();

 % print it
 disp(u.data)
end

import tdt

udp = tdt.PynapseUDP()

while True:
 udp.recv()
 if udp.data is not None:
 print(udp.data)

udp.server.server_close()

UDP | 95

https://pypi.org/project/tdt/

Synapse Control

Pynapse has built in slots for Synapse mode change events. These are useful in the 'Always'

state to initialize variables or buffers for stimulation before the recording begins. It also has a

built-in instance of SynapseAPI to control other gizmo parameters from Pynapse.

Slot Methods for Responding to Synapse Mode Changes

These slots capture Synapse system mode change events. They are available as method

definitions inside Pynapse states. Write a method with this name to react to the corresponding

mode change event.

Slot name Event

s_Mode_change(newmode) Triggers on any mode change

s_Mode_idle Mode changed to idle

s_Mode_standby Mode changed to standby

s_Mode_preview Mode changed to preview

s_Mode_record Mode changed to record

s_Mode_recprev Mode changed to preview or record

If you use p_State.switch() inside s_Mode_standby() , this overrides the 'Initial State' setting on the General

Tab.

Important

Synapse Control | 96

SynapseAPI

Pynapse also exposes an instance of the SynapseAPI class as the variable syn in the source

code editor. Type syn. in the Code Editor and code completion shows you all of the available

method calls. For the complete list of SynapseAPI methods and how to use them, see

SynapseAPI Manual.

Preload a stimulus output buffer before the experiment runs

When experiment starts, switch to PreTrial state as the default starting state.

Example

import numpy as np

class Always: #StateID = 0
 def s_Mode_standby():
 import random
 p_Output.MyOutput.setBuffer(np.random.random(1000).tolist())

class Always: #StateID = 0
 def s_Mode_standby():
 p_State.switch(PreTrial)

SynapseAPI calls goes through sockets, and that adds some extra delay. The SynapseAPI calls are also affected

by what is happening in the Synapse window. For example, if you do something that is graphically intensive such

as resizing the windows during a recording, you can see a big (>100 ms) lag before the call gets through. It

shouldn't be relied on for time critical events.

Important

User puts system into Standby mode, then when trigger is received Pynapse switches system to Record mode.

Example

class Always: #StateID = 0
 def s_MyInput_rise():
 syn.setModeStr('Record')

Synapse Control | 97

https://www.tdt.com/docs/sdk/synapse-api

Gizmo Inputs

You can have up to 8 gizmo inputs into the Pynapse gizmo. These inputs can be digital signals

(logic TTL) or analog signals (float or integer) that go through a Logic Conversion, such as

thresholding.

Gizmo Inputs | 98

Input Processor

Set the Name of the input to something that makes sense for your experiment, e.g. 'NosePoke'.

This will be used throughout the Python code.

You can optionally save epoch timestamp events for each input. An integer code for the event

type is stored with the timestamp. See Epoc Storage below for more information.

Gizmo Inputs | 99

Logic Conversion for Number Signals

Number input signals pass through a logic conversion so they can trigger on/off events in

Pynapse.

Pre-scale is a scalar multiplied by the signal.

Smoothing is a low pass filter that removes jitter on the analog signal before logic conversion.

This helps avoid a situation where the signal is quickly bouncing around the test threshold.

By default, the Test is Above, which is a simple threshold detection method to convert the

number signal input into a logic signal when it goes beyond the Thresh-A value.

Epoc events are triggered on the 'rise' event of all of these tests. If the test can be true for more

than 2 samples ('Strobe') then a timestamp for the 'fall' event is also stored. See Epoc Storage

below for full epoc code information.

By default, Input1 is enabled and connected to the "#Reset" signal as shown below so that Synapse compiles it

correctly. If you make your own gizmo inputs, replace #Reset and start with the first input.

Important

Gizmo Inputs | 100

Test Type Description Duration

Above Signal is above Thresh-A Strobe

Below Signal is below Thresh-A Strobe

Between Signal is between Thresh-A and Thresh-B Strobe

Outside Signal is outside Thresh-A and Thresh-B Strobe

Rising Signal is increasing in value Strobe

Falling Signal is decreasing in value Strobe

Peak Signal forms a local peak Trigger

Valley Signal forms a local valley Trigger

Tip Signal forms a local peak or valley Trigger

Rise Thru Signal rises through Thresh-A from below Trigger

Fall Thru Signal falls through Thresh-A from above Trigger

Pass Thru Signal passes through Thresh-A from above or below Trigger

Gizmo Inputs | 101

Inputs Tab - Logic Options

Gizmo Inputs | 102

Invert and Debounce are typically used if the input is coming directly from a digital input on the

RZ processor. Debounce is the amount of time the input has to settle before its new state is

used. This is useful for lever presses or hardware button presses which can 'bounce' on

contact and trigger several rapid artificial events before making solid contact.

Inputs Tab - Number Options

Gizmo Inputs | 103

Slot Methods for Responding to Input States

These input slots capture status information about the inputs. They are available as method

definitions inside Pynapse states for each input. Write a method with this name to react to the

corresponding event.

Move through behavioral states based on status of MyInput

Slot name Operation Event

s_Input1_rise() Status input changed to true

s_Input1_fall() Status input changed to false

s_Input1_active() Duration input passed the 'Time to Active' duration test (see Duration Testing)

s_Input1_pass() Duration input passed the 'Time to Pass' duration test (see Duration Testing)

s_Input1_fail() Duration input failed the 'Time to Pass' duration test, after passing 'Time to Active' (see

Duration Testing)

s_Input1_done() Buffer input buffer is full and ready to be read (see Buffering)

'Input1' is the default name of the first input. The name of each slot method gets replaced with the name of your

actual input, so if you name the input 'NosePoke' then s_NosePoke_rise() is an available slot

Note

Example

class PreTrial:
 def s_MyInput_rise():
 p_State.switch(StartTrial)

class StartTrial: # StateID = ?
 def s_MyInput_active():
 p_State.switch(ActiveState)

 def s_MyInput_fall():
 p_State.switch(PreTrial)

class ActiveState: # StateID = ?
 def s_MyInput_pass():
 p_State.switch(PassState)

 def s_MyInput_fail():
 p_State.switch(FailState)

Gizmo Inputs | 104

Duration Testing

The inputs can use built-in duration testing. In this example, the button has to be pressed for

600 ms to get to the 'Active' state, and another 400 ms for it to 'Pass'. This timing happens on

the hardware and the active , pass and fail slots are triggered in Pynapse.

No Trial

Time to Active not reached by Input.

No trial is initiated.

Gizmo Inputs | 105

Fail

Time to Active reached by Input, so 'Active' trigger fires.

Time to Pass was not reached by Input, so the 'Fail' trigger fires when Input is released.

Pass

Time to Active reached by Input, so 'Active' trigger fires.

Time to Pass also reached by Input, so 'Pass' trigger fires.

Gizmo Inputs | 106

Epoc Storage

Epoc events are triggered on the 'rise' event of the input and a timestamp and value of 3 is

stored in the data tank. If the input is true for more than 2 samples then the 'fall' event is also

timestamped and stored, with a value of 4.

The full state of the input, including duration test results, is captured in the integer code:

Example values of the epoc event:

Buffering

Buffering lets you save a small snippet of data in hardware memory and read it into Pynapse.

When the input switches to true ('rise' trigger) the buffer is captured. When buffering is

finished it fires the done trigger.

You can connect the buffer signal source can be any single channel signal in your experiment,

including the input signal. Even though the inputs are all converted to digital signals for logic

tests, you can still trigger Pynapse to buffer up the original analog signal and then read that

into Python for online analysis. For example, you can do a threshold detection on a signal and

save the snippet around the threshold crossing, and do something with this in Pynapse.

b6 b5 b4 b3 b2 b1 b0

Done Fail Pass Active Fall Rise True

Event Value Binary Representation

Rise 3 0x0000011

Fall 4 0x0000100

Active 9 0x0001001

Pass 17 0x0010001

Fail 36 0x0100100

Done 64 0x1000000

Gizmo Inputs | 107

Display a 1000 sample buffer when triggered.

Methods

All input methods have the form p_Input.{INPUT_NAME}.{METHOD} . Type p_ in the Pynapse

Code Editor and let the code completion do the work for you.

Buffer operations

Read a triggered snippet of memory from the hardware.

setBufferSize

Change the number of samples to store in the buffer.

Example

%matplotlib

import matplotlib.pyplot as plt

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer and plot
 p_Input.MyInput2.setBufferSize(1000)
 p_Input.MyInput2.armBuffer()
 plt.plot()

 def s_MyInput_done():
 # get buffer
 arr = p_Input.MyInput2.getBuffer()

 # plot buffer contents
 plt.plot(arr)

p_Input.MyInput.setBufferSize(npts)

Inputs Type Description

npts integer Number of samples to buffer

This call must always be made if using a buffer.

Important

Gizmo Inputs | 108

Initialize the buffer size before the recording starts.

armBuffer

Let the buffer accept a trigger and fill with new data.

Arm the buffer when the experiment first runs.

disarmBuffer

Stop the buffer from loading again. Use this to avoid overwriting buffer data before you've had

a chance to read it with getBuffer .

Example

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer
 p_Input.MyInput.setBufferSize(1000)
 p_Input.MyInput.armBuffer()

p_Input.MyInput.armBuffer()

This call must always be made if using a buffer.

Important

Example

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer
 p_Input.MyInput.setBufferSize(1000)
 p_Input.MyInput.armBuffer()

p_Input.MyInput.disarmBuffer()

Gizmo Inputs | 109

Prevent the hardware buffer from triggering/ loading new data while you read it.

getBuffer

Capture the MyInput buffer when the 'done' trigger fires.

Example

p_Input.MyInput.disarmBuffer()
arr = p_Input.MyInput.getBuffer()
p_Input.MyInput.armBuffer()

arr = p_Input.MyInput.getBuffer(npts=0, offset=0)

Inputs Type Description

npts integer Number of samples to read (0=all)

offset integer Starting index in buffer to read from (0-based)

Returns

array number Buffer contents as python list

Example

class Always: #StateID = 0

 def s_Mode_standby():
 # set up the buffer
 p_Input.MyInput.setBufferSize(1000)
 p_Input.MyInput.armBuffer()

 def s_MyInput_done():
 # get buffer
 arr = p_Input.MyInput.getBuffer()
 print(arr)

Gizmo Inputs | 110

Duration Settings

setActTime

Override the duration test 'Time to Active' setting.

Modify the timing test based on performance.

setPassTime

Override the duration test 'Time to Pass' setting.

Modify the timing test based on performance.

p_Input.MyInput.setActTime(acttime_sec)

Inputs Type Description

acttime_sec float Time to Active, in seconds

Example

def s_State_enter():
 # if more than 5 successful trials, increase the time to active by 50 ms.
 if p_Metric.success.read() > 5:
 p_Metric.active_time.inc(delta=0.05)
 p_Input.MyInput.setActTime(p_Metric.active_time.read())

p_Input.MyInput.setPassTime(passtime_sec)

Inputs Type Description

passtime_sec float Time to Pass, in seconds

Example

def s_State_enter():
 # if more than 5 successful trials, increase the time to pass by 50 ms.
 if p_Metric.success.read() > 5:
 p_Metric.pass_time.inc(delta=0.05)
 p_Input.MyInput.setPassTime(p_Metric.pass_time.read())

Gizmo Inputs | 111

Manual Control

Manual turn inputs on, off, or pulse during runtime. Useful for debugging.

manualOn

Manually turn on the input.

Turn on the input when entering a state.

manualOff

Manually turn off the input.

Turn off the input when exiting a state.

manualPulse

Manually pulse the input.

p_Input.MyInput.manualPulse()

Example

def s_State_enter():
 p_Input.MyInput.manualOn()

p_Input.MyInput.manualPulse()

Example

def s_State_exit():
 p_Input.MyInput.manualOff()

p_Input.MyInput.manualPulse()

Gizmo Inputs | 112

Pulse the input when entering a state.

Number Conversion Settings

Override the feature settings applied to the input signal for logic conversion at runtime.

setFeatureThresholds

Modify the threshold settings for the logic conversion.

Modify the lever force requirement based on performance.

Example

def s_State_enter():
 p_Input.MyInput.manualPulse()

p_Input.MyInput.setFeatureThresholds(thresh_A, thresh_B)

Inputs Type Description

thresh_A float Threshold (in V) for the Thresh-A parameter

thresh_B float Threshold (in V) for the Thresh-B parameter

Example

def s_State_enter():
 # if more than 5 successful trials, increase the force required by 0.05
 if p_Metric.success.read() > 5:
 p_Metric.thresh_A.inc(delta=0.05)
 p_Input.MyInput.setFeatureThresholds(p_Metric.thresh_A.read(),
p_Metric.thresh_B.read())

Gizmo Inputs | 113

setScale

Change the scale factor applied to the signal before it goes through the logic conversion.

Modify the scale factor based on a run-time Control.

setSmoothing

Change the smoothing filter applied to the input signal before it goes through the logic

conversion.

Modify the smoothing filter based on a run-time Control.

p_Input.MyInput.setScale(scalefactor)

Inputs Type Description

scalefactor float Scale factor applied to signal before logic conversion

Example

class Always: #StateID = 0

 # set input scale factor to value of the SmoothCtrl slider at runtime
 def s_SmoothCtrl_change(value):
 p_Input.MyInput.setScale(value)

p_Input.MyInput.setSmoothing(tau_sec)

Inputs Type Description

tau_sec float Time constant of the low-pass smoothing filter, in seconds (0=off)

Example

class Always: #StateID = 0

 # set smoothing 'tau' to value of the TauCtrl slider at runtime
 def s_TauCtrl_change(value):
 p_Input.MyInput.setSmoothing(value)

Gizmo Inputs | 114

Status

Get information on the current state of the input.

isOn

Returns true if the input is currently true.

When entering a state, check if an input is already true.

isOff

Returns true if the input is currently false.

When entering a state, check the status of the input.

p_Input.MyInput.isOn()

Example

def s_state_enter():
 if p_Input.MyInput.isOn():
 print('MyInput is on')
 else:
 print('MyInput is off')

p_Input.MyInput.isOff()

Example

def s_state_enter():
 if p_Input.MyInput.isOff():
 print('MyInput is off')
 else:
 print('MyInput is on')

Gizmo Inputs | 115

getRawInput

Read the current value of an input. If it is a number, the raw input into the Pynapse gizmo after

scale factor is applied but before any feature detection.

When a threshold is crossed, check the current value of the signal.

getStatusBits

Read the current state of an input as a bitwise integer value. Bit order is:

Done | Fail | Pass | Active | Fall | Rise | True

Used by the Pynapse polling loop.

p_Input.MyInput.getRawInput()

Example

def s_MyInput_rise():
 print(p_Input.MyInput.getRawInput())

p_Input.MyInput.getStatusBits()

Gizmo Inputs | 116

Gizmo Outputs

You can have up to 8 gizmo outputs from the Pynapse gizmo. The outputs can be logic signals

that are either turned on/off, triggered for a single sample, or strobed high for a fixed duration.

You can also load a custom analog waveform into a buffer and trigger Pynapse to play it out.

Set the Name of the output to something that makes sense for your experiment, e.g. 'Reward'.

This will be used throughout the Python code and to link to other gizmos.

You can optionally save epoch timestamp events for each output. A timestamp is saved when

the output turns on. If the output is high for more than 2 samples then the offset is stored as

well.

Triggered - output stays high for a fixed amount of time (controlled by hardware). If Duration is

0, this is a single sample.

Strobed - output turns on when the turnOn() method is called and turns off when the turnOff()

is called.

See Synchronizing Events for information on the Sync to State Change option.

Gizmo Outputs | 117

Outputs Tab - Logic Options

Gizmo Outputs | 118

Outputs Tab - Number Options

Gizmo Outputs | 119

Outputs Tab - Buffer Options

In the Buffer Options, there is an optional low pass filter (Image Filter) to remove aliased

signals. If unsure, set this to ~⅓ of the output Sample Freq.

Gizmo Outputs | 120

Buffering

Buffering lets you write a small waveform to hardware memory and trigger it for presentation.

This allows you to create fully custom stimuli on the fly, either pre-loaded or adaptive in

response to behavioral events.

Parameter Outputs

Pynapse has a set of Parameter outputs which can control all parameters that define a

stimulation gizmo. For example, control the waveform parameters of an Audio Stimulation

gizmo or an Electrical Stim Driver gizmo directly from Pynapse. This mimics the behavior of

the Parameter Sequencer gizmo. Create the parameters on the fly based on subject feedback,

or play from a python-generated list. See Parameter Methods below.

See Synchronizing Events for information on the Sync to State Change option.

Output Methods

All output methods have the form p_Output.{OUTPUT_NAME}.{METHOD} . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you. 'Output1' is the default

name of the first output. The name of each method gets replaced with the name of your actual

output, so if you name the output 'Reward' then p_Output.Reward.fire() is an available

method.

See Using Parameters for more general information on parameters.

Tip

Gizmo Outputs | 121

https://www.tdt.com/docs/synapse/gizmos/audio-stimulation/
https://www.tdt.com/docs/synapse/gizmos/audio-stimulation/
https://www.tdt.com/docs/synapse/gizmos/electrical-stim-driver/
https://www.tdt.com/docs/synapse/gizmos/parameter-sequencer/
https://www.tdt.com/docs/synapse/gizmos/using-parameters/

Manual Control

Manual turn outputs on, off, or fires a pulse waveform during runtime. Useful for stimulus/

reward presentation.

fire

Quickly pulse the output. This is only available when Control Mode is set to Triggered . If

Duration is non-zero, the output will stay high for that set duration. Set Duration to zero to use

this output to trigger other gizmos e.g. trigger an Audio Stimulation gizmo. If Output Type is

Buffer, this will play the output buffer one time.

Trigger an output when the input goes high.

turnOn

Turn the output on indefinitely. If the output is a buffer, it will continuously loop until turned off.

This is only available when Control Mode is set to Strobed .

Link an input status to an output.

p_Output.MyOutput.fire()

Example

class Always: #StateID = 0

 def s_MyInput_pass():
 p_Output.MyOutput.fire()

p_Output.MyOutput.turnOn()

Example

class Always: #StateID = 0

 def s_MyInput_rise():
 p_Output.MyOutput.turnOn()

 def s_MyInput_fall():
 p_Output.MyOutput.turnOff()

Gizmo Outputs | 122

turnOff

Turn the output off. This is only available when Control Mode is set to Strobed .

Link an input status to an output.

Duration Settings

setPulseShape

Override the output Duration (if Control Mode is set to Triggered) and the Output Value

settings (if Output Type is set to Float or Integer).

Modify the pulse shape and output value based on performance.

p_Output.MyOutput.turnOff()

Example

class Always: #StateID = 0

 def s_MyInput_rise():
 p_Output.MyOutput.turnOn()

 def s_MyInput_fall():
 p_Output.MyOutput.turnOff()

p_Output.MyOutput.setPulseShape(dur_sec, outval=None)

Inputs Type Description

dur_sec float Duration of the output pulse when triggered with fire , in seconds

outval float or integer Output value when true

Example

def s_State_enter():
 # if more than 5 successful trials, decrease the output pulse time by 50 ms and output
value by 1.
 if p_Metric.success.read() > 5:
 p_Metric.pulse_dur.dec(delta=0.05)
 p_Metric.output_val.dec(delta=1)
 p_Output.MyOutput.setPulseShape(p_Metric.pulse_dur.read(), p_Metric.output_val.read())

Gizmo Outputs | 123

setDuration

Override the output Duration (if Control Mode is set to Triggered) setting.

Modify the pulse shape and output value based on performance.

setValue

Override the output Output Value setting (if Output Type is set to Float or Integer).

Modify the pulse shape and output value based on performance.

p_Output.MyOutput.setDuration(dur_sec)

Inputs Type Description

dur_sec float Duration of the output pulse when triggered with fire , in seconds

Example

def s_State_enter():
 # if more than 5 successful trials, decrease the output pulse time by 50 ms.
 if p_Metric.success.read() > 5:
 p_Metric.pulse_dur.dec(delta=0.05)
 p_Output.MyOutput.setDuration(p_Metric.pulse_dur.read())

p_Output.MyOutput.setValue(outval)

Inputs Type Description

outval float or integer Output value when true

Example

def s_State_enter():
 # if more than 5 successful trials, decrease the output value by 1.
 if p_Metric.success.read() > 5:
 p_Metric.output_val.dec(delta=1)
 p_Output.MyOutput.setValue(p_Metric.output_val.read())

Gizmo Outputs | 124

Buffer operations

Load a list of values into a memory buffer on the hardware and trigger playback.

setBuffer

Loads a python list or NumPy array into an output buffer. Call fire to play the output buffer

once. Call turnOn to play buffer on a loop until calling turnOff . Supports waveforms

between 2 and 100,000 samples long.

Load an output buffer with 1,000 random numbers before the recording starts, and trigger it when MyInput goes

true.

Status

Get information on the current state of the output.

p_Output.MyOutput.setBuffer(wave)

Inputs Type Description

wave list List of numbers to load into output buffer

Example

import numpy as np

class Always: #StateID = 0

 def s_Mode_standby():
 import random
 p_Output.MyOutput.setBuffer(np.random.random(1000).tolist())

 def s_MyInput_rise():
 p_Output.MyOutput.fire()

Gizmo Outputs | 125

isOn

Returns true if the output is currently true.

When entering a state, check if an output is already true.

isOff

Returns true if the output is currently false.

When entering a state, check the status of the output.

p_Output.MyOutput.isOn()

Example

def s_state_enter():
 if p_Output.MyOutput.isOn():
 print('MyOutput is on')
 else:
 print('MyOutput is off')

p_Output.MyOutput.isOff()

Example

def s_state_enter():
 if p_Output.MyOutput.isOff():
 print('MyOutput is off')
 else:
 print('MyOutput is on')

Gizmo Outputs | 126

Parameter Methods

All parameter methods have the form p_Param.{PARAMETER_NAME}_write . Type p_ in the

Pynapse Code Editor and let the code completion do the work for you. 'Par1' is the default

name of the first parameter. The name of each write method gets replaced with the name of

your actual parameter, so if the parameter is called 'Freq' then p_Param.Freq_write(val) is

an available method.

Par1_write

Write a new value for this parameter.

Modify the wave frequency for an Audio Stimulation gizmo when a state changes.

List_write

Write all the parameters at once using a list.

p_Param.Par1_write(val)

Inputs Type Description

val float Floating point value to send to this parameter output

Example

class PrepStim: #StateID = 0
 def s_State_enter():
 # get next stim ready
 wave_freq = 1000
 p_Param.p_Param.WaveFreq_write(wave_freq)

p_Param.List_write(vlist)

Inputs Type Description

vlist list List of floating point numbers to send to all parameter outputs

Gizmo Outputs | 127

Prepare a list of stimulation parameters for an Audio Stimulation gizmo when a state changes.

In this example, the parameters that we can write are the 2 , 3 , and 6 values in the full parameter array. Be

sure to include zeros for the parameters that aren't writable, as in the code example below.

Note

nd rd th

Example

class PrepStim: #StateID = 0
 def s_State_enter():
 # get next stim ready
 pulse_count = 3
 pulse_period = 200
 wave_freq = 500
 vals = [0, pulse_count, pulse_period, 0, 0, wave_freq]
 p_Param.List_write(vals)

Gizmo Outputs | 128

General Tab

General Tab

Set the Python Install Directory and Environment for the Python interpreter. See Requirements

for information on installing Python and setting up an environment for Pynapse. After these

are defined in Pynapse, they will become the default python directory and environment used in

future experiments. You can change this in the Preferences Dialog.

General Tab | 129

https://www.tdt.com/docs/synapse/designtime-reference/#general

iCon Integration

If there is an iCon in your experiment, Pynapse will automatically attach to it and it will be

selected in the Behavioral Controller list. This enables the iCon tab and the iCon Inputs and

iCon Outputs asset classes in the Python editor and hides the Gizmo Inputs and Gizmo

Outputs tabs.

If Behavioral Controller is set to None, the default Gizmo Inputs and Gizmo Outputs tabs and

assets are available.

If you want to use a mix of iCon inputs/outputs and gizmo inputs/outputs in your Python code,

check the with Pynapse Gizmo I/O box.

Polling Loop

The Pynapse event loop regularly polls the hardware for new information. The polling loop

delay depends on the Polling Rate setting. The typical round-trip delays (read Pynapse input →

set Pynapse output) are shown below.

For tighter behavioral state control, always enable Maximum Polling Rate.

Polling Rate Maximum Delay

enabled 4-5 ms

disabled ~40 ms

Maximum polling rate is not available when using Corpus hardware emulation

Note

General Tab | 130

Debugging

Enable run-time debugging features so you can make manual function calls. See Run-Time and

Debugging for more information. Turn this off when the experiment design is finished so you

don't accidentally modify the experiment flow during run-time.

States

Initial State tells Pynapse which State to start it when the experiment first executes. If you

have Python code in your Always state that triggers a state change when Synapse switches to

Standby mode, this will override the state set here. See Synapse Control for more information.

State Epoc saves an epoc event with the timestamp and state number any time the state

changes. This is used to correlate your e-phys and other data with behavioral states in post-

processing.

Call Log File saves a file called {GIZMO_NAME}_call_log.csv in the block folder that contains

timestamps and state information any time a slot is called. It's essentially a log of every

behavioral event that happens during the recording. You can optionally save a timestamped

epoc event in the data tank as well. 'Off' will disable the Call Log user interface, but the log file

is still saved to disk.

User Log File

Enables automatic logging of Controls, Metrics, and Session details. Also adds a p_Log asset

in Python to write your own entries. See Logs for more details.

UDP Broadcast

Enables a UDP broadcast packet with session details, so other applications or devices on the

network can interact with the experiment. Also adds a p_Udp asset in Python to write your

own entries. See UDP for more details.

General Tab | 131

Code Editor and Parser

The built-in Python editor is where all your states and events are defined, telling the Pynapse

event loop what do when events happen. Click the 'Edit' button, or double-click on the Source

code, to enable editing.

The built-in Python editor does code completion for you. Every time you press 'Commit' the

parser dynamically generates a list of methods and event triggers you have access to based

on the named inputs, outputs, controls, globals, and timers. All Pynapse assets start with p_

and all slot methods start with def s_ , so start there and the code completion will show you

the available assets or slots.

Code Editor and Parser | 132

You can also right-click → "Help" on anything in the editor to show more complete

documentation on the object under the cursor.

Asset names are linked to their method calls in the Python

code. Assets that appear in the Python code will have a

lock icon next to their names in their asset tab. If you

decide to change the name of an asset after writing Python code that interacts with it, click the

lock icon to change the name of the asset and update all of the instances of this name in the

Python code.

Assets Code Completion

Slots Code Completion

Code Editor and Parser | 133

Code Tree

The parser identifies all of the states and all of the methods that are written within the states

that respond to events, and builds the Code Tree.

You can click on any item in the Code Tree and the Editor shows you just the selected state or

methods so you are just editing that part of the code. If you want to look at the entire file, click

'Main' in the Code Tree.

By default the Code Tree shows only Pynapse states and slot methods. Sometimes you'll write

methods inside states that aren't Pynapse slots. The 'Show All' button will include these methods in

the Code Tree.

Note

Code Editor and Parser | 134

To Add a State

The easiest way to add a state is by right-clicking on an existing state in the Code Tree (or

'Main') and adding a state from the menu. This brings up a state creation wizard that shows

you all the available hardware events you can capture with the state. You choose which

methods to include in the code and a state timeout if desired. This saves you from having to

remember the exact syntax for creating a state every time.

You can also edit the Python code directly with the required state structure:

class MyNewState: #StateID = ?
 pass

After you create a state, you can get back to the creation wizard by right-clicking the state name in the Code Tree

→ Reconfigure.

Note

Code Editor and Parser | 135

Working with StateIDs

Classes defined with the #StateID = ? comment are parsed as Pynapse states. If the StateID

is ? then Pynapse will automatically assign a number to the state for you. The StateIDs are

shown next to the state name in the Code Tree.

The StateID number is saved into the data tank when state changes occur during runtime. It is

important that the StateIDs are consistent across recordings. If you make changes to your

Pynapse source code and all of the StateIDs are ? then these numbers will change if you add

or remove states from your source code. This will make it harder to organize your data during

post-processing if you are trying to compare data made with your newer experiment to

recordings made with earlier versions of your experiment.

The solution is to lock the StateIDs to a value right in the comment, like #StateID = 555 . If

you already have code written with automatically generated StateIDs, you can lock the current

StateIDs in place by right-clicking on 'Main' and select 'Commit State IDs'. This will overwrite all

of the #StateID = ? comments with their assigned StateID, like #StateID = 1010 .

You can include regular classes in the code that aren't Pynapse states by excluding the #StateID comment from

the class definition.

Note

StateIDs have to be defined in order (top to bottom) in the Python source code. For example, this code is invalid

because the state class defined with #StateID = 2 is before #StateID = 1 .

Important

class Always: #StateID = 0
 def s_Mode_standby():
 p_State.switch(MyState1)

class MyState1: #StateID = 2
 def s_State_enter():
 print('MyState1')
 p_State.setTimeout(1, MyState2)

class MyState2: #StateID = 1
 def s_State_enter():
 print('MyState2')
 p_State.setTimeout(1, MyState1)

Code Editor and Parser | 136

Flow Chart

As experiments get more complicated, it is helpful to see an overview of

how the states, inputs, and outputs are connected. Click the Flow Chart

button to see a graphical representation of all these links. Double-click on a

state in the Flow Chart to show it in the code editor. Right-click the Flow Chart button to center

the dialog on screen.

Summary

Click the Summary button to see a table view of all the Pynapse assets and

their parameters - Inputs, Outputs, Metrics, Controls, etc. This is helpful to

troubleshoot at a glance, and to help while coding your experiment. You don't

have to keep flipping back and forth between tabs to get asset names. Right-click the

Summary button to center the dialog on screen.

Organizing Your Code

Python code is stored either directly in the experiment or locally on your hard drive.

Python Code Blocks

'Main' is the default block of Pynapse code in the Code Tree saved with the experiment. You

can have up to three other 'Local' Pynapse code blocks that are also saved in the experiment.

These are not files on disk but rather saved with the experiment in the Synapse database. To

add a code block, right-click on empty space in the Code Tree and select 'Add Local Pynapse

Block'. You can import/export blocks if desired.

Code Editor and Parser | 137

Python Local Files

You can import locally saved Python files from your hard drive into Pynapse. This is a

convenient way to share common code between experiments. This also gives you a way to

develop your own own classes/modules outside of Synapse and link to them from the

experiment

You can link to as many existing files on disk as you want and they get imported automatically.

To import a Python file, right-click on empty space in the Code Tree select 'Add Python Import

File', and choose the Python file.

TDT Modules

TDT provides several external modules for stimulus design and experiment templates for

common operant conditioning protocols.

To make a TDT module available, right-click on empty space in the Code Tree and select 'Add

Python Module'. This loads the list of modules from C:\TDT\Synapse\PynapseLibs and makes

them selectable. The imported classes can then be instantiated in your Python code.

Testing

You can right-click on any state, method, or Python file in the Code Tree and select 'Test'. This

will load the source file and run every method inside of it. Any obvious errors that will come up

at run-time (like naming problems) are shown in the Python Output window at the bottom, with

a reference to the method and line number causing the error.

In the example below, setTimeout was incorrectly capitalized (should have used code

completion!).

Code Editor and Parser | 138

See Run-Time and Debugging for more debugging tips.

Code Editor and Parser | 139

Run-Time and Debugging

The Pynapse run-time interface has two modes. The default view shows the current State in

red text, any Controls and Metrics assets defined at design-time, and the Console Output

shows any print outputs or error messages from the Python code.

Debug View

Click the Debugger icon to open the expanded run-time view. This gives you a more in-

depth look at the events in Pynapse and allows you to manipulate the Pynapse state

and manually trigger events during the experiment.

Run-Time and Debugging | 140

Call Tree

The Call Tree shows all the states and slot methods that Pynapse knows about. An icon next

to the state/slot name gives you more status information:

Expand Mode determines what methods to show within the states.

Icon Description

Currently active state*

A green lightning bolt is briefly shown next to successful calls

A red warning sign is briefly shown next to calls that had errors

* The Always state is always also active and slot methods within it can always be triggered by Pynapse events

Note

Run-Time and Debugging | 141

Time Line

The Time Line shows when a state is active and when slot methods fired. If there was an error

during the slot method, it will show a red bar. You can click on events in the time line to see

more information about it in the Call Log.

The controls at the top can stop/resume the time line, or move backward/ forward in time for

review.

Span is how much time to show in the time line. When it gets to the end it clears the time line

and starts drawing from the left. Overlap is what percentage of the end of the previous time

line to include when the time line refreshes.

Sync To can be used to reset the time line when a particular state change happens, so you can

easily follow the events in a particular state. This is helpful for debugging rapid events using a

short time Span.

Call Log

All Pynapse events are captured in the Call Log with a timestamp and the amount of time

spent in that method.

Icon Description

Show only the states and no slot methods

Show all slot methods within current state

Show all slot methods within all states

The information shown here is also optionally saved to a text file with the rest of your data. Enable the Call

Logging setting in the General Tab at design-time.

Tip

Run-Time and Debugging | 142

If you click on an event in the call log, that event will be highlighted in the Call Tree, and vice

versa. If it was an error, it will be outlined in red.

The window underneath the call log shows the console output for the selected call, including

any error messages generated by that call, so you can track it down in the source code.

Icon Description

You can optionally exclude the 'Always' state calls by turning off the Always button

The Show All button will show every Pynapse event, including state timeouts, internal state changes,

and global variable changes

A green lightning bolt is shown next to successful calls

A red warning sign is shown next to calls that had errors

Pause the time line so the Call Log doesn't refresh while you are trying to look at the error messages.

Note

Run-Time and Debugging | 143

Debugging

Manual Control

You can manually control the state flow in the Call Tree. Double-click on any state to switch

Pynapse into that state. The event will be capture in the Call Log.

You can also double-click on a slot method to trigger it manually. This will not be captured in

the call log.

Code Viewing

The bottom of the Debugging window is a view of the source code. Click on a state or a slot

method in the Call Tree to see its source.

The Allow Run-Time Call Control check box on the General Tab at design-time must be enabled for manual

control to work.

Important

Run-Time and Debugging | 144

Tips and Tricks

Timeout Errors

If any method takes longer than ~3 seconds to execute, you will see this message in the

Console Output window:

Timeout error while waiting for response from Python kernel

Avoid doing anything computationally intensive that takes longer than 3 seconds. Also, avoid

using time.sleep statements as a way to control experiment flow. Use additional states and

setTimeout to manage experiment flow.

Here's an example of poor design that will cause a timeout error:

Instead, use the Pynapse state machine to keep track of the time delay for you:

import time
class State1: #StateID = ?

 def s_Input1_rise():
 print('button pressed')
 time.sleep(5) # this will cause Timeout error
 print('do something')

class State1: #StateID = ?

 def s_Input1_rise():
 print('button pressed')
 p_State.setTimeout(5, State2)

class State2:
 def s_State_enter():
 print('do something')

Tips and Tricks | 145

Synchronizing Events

By default, all outputs in the Python code are executed sequentially as they are written. In the

example below, outputs and timers are turned on in a slot method. The time.sleep

statements are used for demonstration purposes to exaggerate the effect by adding additional

latency between each call.

The two outputs and the timer have 'Epoc Save' turned on. The runtime output looks like this:

You can see the noticeable 100 ms gaps in between the output events, and all of these events

occur before the state change ('P1S/' = 2 in this example).

import time
class MyState1: #StateID = 1
 def s_MyInput_rise():

 p_Output.MyOutput1.fire()
 time.sleep(0.1)

 p_Timer.MyTimer1.setPeriod(.1)
 p_Timer.MyTimer1.setRepeats(3)
 p_Timer.MyTimer1.start()
 time.sleep(0.1)

 p_Output.MyOutput2.fire()
 time.sleep(0.1)

 p_State.switch(MyState2)

Event Description

P1S/ State change event timestamp

Out1 Output1 fired

Tim1 Timer1 ticked

Out2 Output2 fired

Tips and Tricks | 146

For coordinating stimulus events or anything else that has to happen on the hardware

simultaneously, the Outputs, Parameters, and Timers have a Sync to State Change option. If all

of the outputs and timers in the last example had this option enabled, then the result looks like

this:

The sleep delays are still there but now all outputs fire precisely when the state changed to 2.

Delays

The polling loop delay depends on the 'Polling Rate' setting in the Pynapse General Tab. The

typical round-trip delays (read Pynapse input → set Pynapse output) are shown below.

For tighter behavioral state control, always enable Maximum Polling Rate.

The p_State.switch statement must come after any calls to set the timers or outputs for this to work properly.

Important

Polling Rate Maximum Delay

enabled 4-5 ms

disabled ~40 ms

Maximum polling rate is not available when using Corpus hardware emulation

Note

If using the SynapseAPI class in Pynapse, there is a variable delay that ranges from 5 to 30 ms. If the computer is

under heavy processing, there can be delay spikes up to ~100 ms.

Note

Tips and Tricks | 147

Run-time Plots

If you would like to do online plotting or make your own custom GUIs then matplotlib and

ipykernel==4.10.1 must also be installed in your Python environment.

If you want to plot something on screen using matplotlib you must include this line of code at

the top of your Python code:

%matplotlib

If for some reason you need to set the matplotlib backend is set, once it is set it cannot be changed for the entire

interpreter session. For example, if in between recordings you change %matplotlib qt to %matplotlib tk , the

second statement is ignored and qt backend will be used. If Pynapse code gets modified such that a different

backend is used, a complete restart of Synapse is required.

Metric and Control asset 'writes' go through the SynapseAPI and have a longer delay.

Any calls that 'read' an asset value (except for Metric which are python variables) also go through the

SynapseAPI.

Important

Note about using a different matplotlib backend

Tips and Tricks | 148

Pynapse Training Videos

Introduction

Intro to iCon & Pynapse: Part 1

Connect your iCon hardware and configure your Synapse rig. See an overview of the Pynapse gizmo and create

your first experiment using Pynapse.

Intro to iCon & Pynapse: Part 1

Pynapse Training Videos | 149

https://www.youtube.com/embed/MV9rl5U0B4o?rel=0
https://www.youtube.com/embed/MV9rl5U0B4o?rel=0

Intro to iCon & Pynapse: Part 2

Use the Pynapse state machine, Metrics, and Session Manager to create a more complicated experiment.

Intro to iCon & Pynapse: Part 2

Pynapse Training Videos | 150

https://www.youtube.com/embed/P2qkEoqW9PM?rel=0
https://www.youtube.com/embed/P2qkEoqW9PM?rel=0

Installing Anaconda Python

Anaconda installs from https://docs.anaconda.com/anaconda/install/windows/

During installation:

Select 'Install for All Users'

Change the installation directory to C:\Anaconda3

We recommend installing 64-bit Python on 64-bit Windows 10. This is the Python 3.x "64-Bit Graphical Installer"

option.

On 32-bit machines, install the Python 3.x "32-Bit Graphical Installer".

Note

1.

a.

b.

Example Installer 1

Installing Anaconda Python | 151

https://docs.anaconda.com/anaconda/install/windows/

Environments

A Python virtual environment is a self-contained directory tree that contains a Python

installation for a particular version of Python, plus a number of additional packages. The

default environment is called base .

Environments are simply directories on disk, so it is easy to delete/recreate environments if

they get in a bad state. It is more difficult to do this with the base environment. It is therefore

recommended that you create a specific environment for Pynapse to use.

Environments are created in Anaconda using an Anaconda Prompt. Note that you can specify

the Python version for each environment as well.

Here's how to create a Python 3.7 environment to use in Pynapse:

In Windows, go to Start → "Anaconda Prompt (Anaconda3)". This starts you in the base

environment.

If you installed Anaconda 3.8 or higher, then the base environment needs to be modified to

support Pynapse environment integration.

Type this in the command prompt:

Example Installer 2

1.

2.

a.

Installing Anaconda Python | 152

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands

Type this to create the Python 3.7 environment called 'pynapse':

The fresh environment is mostly empty, so you'll want to add common packages. From the

Anaconda Prompt, first type this to activate the new environment:

Then install some of the libraries we'll want to use. For example, install the tdt package for

data analysis:

If you want to add your own custom runtime plotting to Pynapse, create the environment

with this:

Pynapse Setup

In Synapse, go to Menu → Preferences and set the Python Directory to

Add a Python Coding Gizmo from the Specialized gizmo list.

pip install ipykernel==4.10.0 pyzmq==19.0.1 jedi==0.17.0

3.

conda create --name pynapse python=3.7 ipykernel=4.10.0 pyzmq=19.0.1
jedi=0.17.0

4.

conda activate pynapse

5.

pip install tdt

Anytime you want to add packages to an environment, do it through the Anaconda Prompt and activate your

environment first.

Important

6.

pip install matplotlib

1.

C:\Anaconda3

2.

Installing Anaconda Python | 153

https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-python/getting-started/

The Pynapse General Tab has a drop down that shows the environments created in

Anaconda, so you can choose the environment directly in the GUI. Click the refresh button

and choose the pynapse environment we just created. Commit the change.

In Synapse, go to Menu → Preferences. The Python Directory and Environment will have

updated to the path you just used. Select 'Lock' so this path and environment are the

defaults whenever you use a Pynapse gizmo.

3.

4.

Installing Anaconda Python | 154

Installing Anaconda Python | 155

Installing Standard Python

Standard python.exe installs from https://www.python.org/downloads/windows/. Pynapse

works best with Python 3.7.

During installation, select 'Customize Installation'

Select 'Install for All Users' and 'Add Python to environment variables'

Change the installation directory to C:\Python3

We recommend installing 64-bit Python on 64-bit Windows 10. This is the Python 3.7.x "Windows x86-64

executable installer" option. The latest available version of 3.7.x is 3.7.9.

On 32-bit machines, install the Python 3.7.x "Windows x86 executable installer".

Note

1.

a.

b.

Installing Standard Python | 156

https://www.python.org/downloads/windows/
https://www.python.org/downloads/release/python-379/

Environments

A Python virtual environment is a self-contained directory tree that contains a Python

installation for a particular version of Python, plus a number of additional packages. The

default environment is called 'base'.

Environments are simply directories on disk, so it is easy to delete/recreate environments if

they get in a bad state. It is more difficult to do this with the 'base' environment. It is therefore

recommended that you create a specific environment for Pynapse to use.

Environments are created in standard python.exe installation with the venv module.

From the command line:

python -m venv C:\Python3\envs\pynapse

To install pip packages from the command line (Start → cmd), you first activate the

environment. Pynapse requires a few packages with specific versions (see https://github.com/

ipython/ipykernel/issues/358 and https://github.com/ipython/ipykernel/issues/518 for more

information).

The tdt package is useful for offline data analysis:

pip install tdt

Pynapse Setup

In Synapse, add the Python Coding Gizmo from the Specialized gizmo list.

C:\Python3\envs\pynapse\Scripts\activate.bat
pip install ipykernel==4.10.0 pyzmq==19.0.1 jedi==0.17.0
ipython_genutils==0.2.0

1.

Installing Standard Python | 157

https://docs.python.org/3/library/venv.html
https://github.com/ipython/ipykernel/issues/358
https://github.com/ipython/ipykernel/issues/358
https://github.com/ipython/ipykernel/issues/518
https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-python/getting-started/

In Pynapse General Tab, set the Python Install Directory to your installed Python

environment, which in this case is:

C:\Python3\envs\pynapse\Scripts\python.exe

In Synapse, go to Menu → Preferences. The Python Directory will have updated to the path

you just used. Select 'Lock' so this path is the default path whenever you use a Pynapse

gizmo.

2.

3.

Installing Standard Python | 158

Installing Standard Python | 159

	Table of Contents
	Overview
	Benefits of Pynapse
	Pynapse Gizmo
	Event Loop
	Python State Machine
	Session Manager
	iCon Integration
	Main Assets of Pynapse Gizmo
	Common Applications

	Requirements
	Installing Python
	Custom Plotting and User Interface
	Install Other Packages
	Other Installation Methods

	Quick Start Example
	Using the Always State
	Using Multiple States

	iCon Inputs
	iCon Tab
	Run-time Interface
	Slot Methods for Responding to Input States
	Methods
	Duration Settings
	setActTime
	setPassTime
	setRateThresh

	Manual Control
	manualOn
	manualOff
	manualPulse
	setMute

	Status
	isOn
	isOff
	getStatusBits

	iMn Input Settings
	setProcLowPass
	setProcHighPass
	setProcGain
	setProcThresh
	setProcHistReduce
	setProcSmooth

	iCon Outputs
	iCon Tab
	Run-time Interface
	Output Methods
	Manual Control
	fire
	turnOn
	turnOff
	setMute

	Duration Settings
	setDuration

	Status
	isOn
	isOff

	iMn Output Settings
	setAtten
	setFreq
	setVolt
	setDutyCycle
	setPeriod
	setWidth

	iS9 Output Settings
	setStimCurrent

	States
	Slot Methods for Responding to State Changes
	State Timeouts
	Methods
	State Control
	switch
	setTimeout
	cancelTimeout

	Status
	isCurrent
	isNotCurrent

	Timers
	Control Modes
	Pulse Control
	Standard
	Early Pulse

	Slot Methods for Responding to Timer Ticks
	Methods
	Setup
	setPeriod
	setRepeats

	Control
	turnOn
	turnOff
	start

	Status
	getCount

	Controls
	Phase Presets
	Locking
	Slot Methods for Responding to Control Changes
	Methods
	Status
	read

	Control
	write
	lock
	unlock
	setRange
	setLabel
	hide
	show

	Sessions
	Session Mode Controls
	Flow Control
	Automatic
	Automatic with SyncDelay
	Manual

	Scheduler
	Slot Methods for Responding to Session Changes
	Methods
	Session Control
	startSession
	pauseSession
	resumeSession
	stopSession
	disabManSessionControl
	enabManSessionControl

	Trial Control
	setTrialMax
	setBlockMax
	startTrial
	startBlock
	endTrial

	Status
	getTrialMax
	getBlockMax
	curTrial
	curBlock
	curSession
	isBlockStarting
	isBlockEnding
	isBlockNew
	isSessionStarting
	isSessionEnding
	isSessionActive
	isBlockActive
	isTrialActive

	Timers
	markTime
	sinceRecordStart
	sinceSessionStart
	sinceBlockStart
	sinceTrialStart
	sinceTrialEnd
	sinceMark

	Metrics
	Run-time Interface
	Ledger
	Plotting
	Adjusting the plots

	Methods
	Status
	read

	Control
	write
	inc
	dec
	scale
	round

	Data Conversion
	toFloat
	toInt
	toString
	toPretty

	Logs
	Control Logging
	Metric Logging
	Session Logging
	Custom Text Logging
	Methods
	writeControlValue
	writeMetricValue
	writeRawText
	writeSessionEntry

	UDP
	Control Packet
	Metric Packet
	Custom Text Packet
	Methods
	sendControlValue
	sendMetricValue
	sendRawText
	sendSessionEntry

	Programming Guide
	MATLAB
	Reading from Pynapse UDP

	Python
	Reading from Pynapse UDP

	Synapse Control
	Slot Methods for Responding to Synapse Mode Changes
	SynapseAPI

	Gizmo Inputs
	Logic Conversion for Number Signals
	Slot Methods for Responding to Input States
	Duration Testing
	Epoc Storage
	Buffering
	Methods
	Buffer operations
	setBufferSize
	armBuffer
	disarmBuffer
	getBuffer

	Duration Settings
	setActTime
	setPassTime

	Manual Control
	manualOn
	manualOff
	manualPulse

	Number Conversion Settings
	setFeatureThresholds
	setScale
	setSmoothing

	Status
	isOn
	isOff
	getRawInput
	getStatusBits

	Gizmo Outputs
	Buffering
	Parameter Outputs
	Output Methods
	Manual Control
	fire
	turnOn
	turnOff

	Duration Settings
	setPulseShape
	setDuration
	setValue

	Buffer operations
	setBuffer

	Status
	isOn
	isOff

	Parameter Methods
	Par1_write
	List_write

	General Tab
	iCon Integration
	Polling Loop
	Debugging
	States
	User Log File
	UDP Broadcast

	Code Editor and Parser
	Code Tree
	To Add a State
	Working with StateIDs
	Flow Chart
	Summary

	Organizing Your Code
	Python Code Blocks
	Python Local Files
	TDT Modules

	Testing

	Run-Time and Debugging
	Debug View
	Call Tree
	Time Line
	Call Log

	Debugging
	Manual Control
	Code Viewing

	Tips and Tricks
	Timeout Errors
	Synchronizing Events
	Delays
	Run-time Plots

	Pynapse Training Videos
	Introduction
	Intro to iCon & Pynapse: Part 1
	Intro to iCon & Pynapse: Part 2

	Installing Anaconda Python
	Environments
	Pynapse Setup

	Installing Standard Python
	Environments
	Pynapse Setup

