
Offline Analysis Tools

Working with TDT data in Matlab

Updated 2025-02-27

© 2016-2025 Tucker-Davis Technologies, Inc. (TDT). All rights reserved.

Tucker-Davis Technologies
11930 Research Circle
Alachua, FL 32615 USA
Phone: +1.386.462.9622
Fax: +1.386.462.5365

Notices

The information contained in this document is provided "as is," and is subject to being changed,
without notice. TDT shall not be liable for errors or damages in connection with the furnishing, use, or
performance of this document or of any information contained herein.

The latest versions of TDT documents are always online at https://www.tdt.com/docs/

Offline Analysis Tools | 2

https://www.tdt.com/docs/

Table of Contents

Overview of MATLAB Offline Analysis Tools

5TDTbin2mat

6TDTfilter

7SEV2mat

8TDTfft

12TDTdigitalfilter

15TDTthresh

TDT Data Storage

16TDT Data Types

17Merging Blocks

18Splitting Blocks

Importing TDT Data into MATLAB for Offline Analysis

19Requirements

19Installation

Example Workbooks

20Averaging Example

27LFP Plot Example

30Note Filter Example

34Raster Peristimulus Time Histogram (PSTH) Example

38Filter and Threshold Raw Data Into Snippets

48Snippet Plot Example

58Stream Plot Example

62Fiber Photometry Epoch Averaging Example

71Licking Bout Epoc Filtering

83Export Continuous Data To Binary File

Conversion of Continuous Data into Binary Format

87Scaling Notes

88Using TDTexport

89Using OpenBrowser or OpenBridge (EDF, DDT, PLX)

91Using the Python SDK

91Using the MATLAB SDK

Video Review and Scoring

92Notes for Third-Party Video Recording

93View Video Synchronized with Other Data

93How To Score Videos or Timestamp Data Based on Behavior In Video

97View Data in Another Video Viewer

Table of Contents | 3

98Plot My Data Alongside Video

OpenBridge User Guide

99Overview

100Workspace Basics

103Setting the Export Preferences

104Selecting the Export Format

104Selecting Events

105Exporting Data in NEX, DDT, and EDF Formats

105Exporting Data using Batch Processing

106Using the Bridge with Offline Sorter

109Importing Channels

111The Toolbar and Menus

Table of Contents | 4

Overview of MATLAB Offline Analysis Tools

Read block files directly from disk or SEV files directly from RS4.

See TDT Data Storage for a description of the folder structure.

TDTbin2mat

TDTbin2mat is an all-in-one function for reading TDT data into MATLAB. It needs only one

input: the block path.

TDTbin2mat will return a structure containing all recorded data from that block, organized by

type. See TDT Data Types for a description of the data types.

data = TDTbin2mat('C:\TDT\Synapse\Tanks\Exp1-160921-120606\Sub1-1');

Overview of MATLAB Offline Analysis Tools | 5

TDTbin2mat uses parameter value combinations to refine the imported data. To extract

specific event types only, use the 'TYPE' option. For example, to import epocs and snippets

only, use this:

Use the 'STORE' option to extract a particular data store by name, in this example a streaming

event called 'Wav1' . Combine this with the 'CHANNEL' option to extract a single channel, or

list of channels, in this case channel 2:

You can also filter by time, if you are only interested in portions of the recording, or if the entire

recording won't fit into available memory (RAM) at one time. Use the 'T1' and 'T2' options

to specify the start and stop time, in seconds, to retrieve from the block. This example reads

only from time T1=10s to time T2=20s of the block into MATLAB:

TDTbin2mat offers many more useful options that are described in its help documentation.

TDTfilter

TDTfilter applies advanced epoc filtering to extracted data. For example, if you only want to

look at data around a certain epoc event, you will use TDTfilter to do this. See the Raster/

PSTH example for a complete demonstration.

To only look at data around the epoc event timestamps, use a 'TIME' filter. In this example,

data from 20 ms before the Levl epoc to 50ms after the onset is retained.

To only look at data when an epoc was a certain value, use a 'VALUES' filter. In this example,

only data when the Freq epoc was equal to 9000 or 10000 is retained.

data = TDTbin2mat('C:\TDT\TDTExampleData\Algernon-180308-130351', ...
 'TYPE', {'epocs', 'snips'})

data = TDTbin2mat('C:\TDT\TDTExampleData\Algernon-180308-130351', ...
 'STORE', 'Wav1', 'CHANNEL', 2);

data = TDTbin2mat('C:\TDT\TDTExampleData\Algernon-180308-130351', ...
 'T1', 10, 'T2', 20);

>> help TDTbin2mat

data = TDTfilter(data, 'Levl', 'TIME', [-0.02, 0.07]);

Overview of MATLAB Offline Analysis Tools | 6

raster-peristimulus-time-histogram-psth-example/
raster-peristimulus-time-histogram-psth-example/

If you want to look for a particular behavioral response that occurs sometime during the

allowed time range, use the 'MODIFIERS' filter. In this example, only data when the Freq epoc

was 10000 AND the Resp epoc had a value of 1 sometime during the Freq epoc is retained.

As you can see, for complex filtering the output from one call to TDTfilter can become the

input to the next call to TDTfilter . If your data sets are large, or if you are iterating through

many combinations of epoc variables, it is preferred to extract only the epocs and do all of the

epoc filtering first to find the valid time ranges that match the filter, and then use this as the

'RANGES' input to TDTbin2mat to extract all events (including snips, streams) on only those

valid time ranges.

SEV2mat

SEV2mat reads SEV files into a MATLAB structure. SEV files are created by the RS4 Data

Streamer or by enabling the Discrete Files option when streaming continuous signals in

Synapse. SEV files consist of a single channel of data per file, with a short header, so it is very

fast to read them. TDTbin2mat will automatically call SEV2mat if it finds SEV files in the block

directory. Like TDTbin2mat , SEV2mat needs only one input: the block path.

SEV2mat will return a structure containing the streams that it found. Each stream field includes

the data array and sampling rate.

data = TDTfilter(data, 'Freq', 'VALUES', [9000, 10000]);

data = TDTfilter(data, 'Freq', 'VALUES', [10000]);
data = TDTfilter(data, 'Resp', 'MODIFIERS', [1]);

% read just the epoc events
data = TDTbin2mat(block_path, 'TYPE', {'epocs'});

% use the epocs to find time ranges we want
data = TDTfilter(data, 'Freq', 'VALUES', [9000, 10000]);
data = TDTfilter(data, 'Levl', 'VALUES', [70, 80, 90]);
data = TDTfilter(data, 'Resp', 'MODIFIERS', [1]);

% read just the value time ranges from the whole data set
data = TDTbin2mat(block_path, 'RANGES', data.time_ranges);

data = SEV2mat('C:\TDT\Synapse\Tanks\Exp1-160921-120606\Sub1-1');

Overview of MATLAB Offline Analysis Tools | 7

TDTfft

TDTfft performs frequency analysis on the data stream. It takes the stream data output of

TDTbin2mat and a channel number as inputs. In this example, it is plotting channel 1 of the

'LFP1' store from an example block.

Use the 'FREQ' input to specify the frequency range that you're interested in.

data = TDTbin2mat('C:\TDT\TDTExampleData\Algernon-180308-130351');
TDTfft(data.streams.LFP1, 1);

Overview of MATLAB Offline Analysis Tools | 8

Often the frequency plot is noisy. Use the 'NUMAVG' input to smooth out the frequency plot

and better isolate the components with the most power through the entire recording. This

breaks the data into chunks, performs the FFT on those chunks, and then plots the average.

% look at frequencies 0 Hz to 300 Hz only
TDTfft(data.streams.LFP1, 1, 'FREQ', [0, 300]);

% split data up into 20 chunks and plot average FFT
TDTfft(data.streams.LFP1, 1, 'FREQ', [0, 300], 'NUMAVG', 20);

Overview of MATLAB Offline Analysis Tools | 9

Set the 'SPECPLOT' input to 1 to also display a spectrogram of the entire data stream. If the

data set is too long then MATLAB could run out of memory to do this, and you would need to

use the T1 and T2 parameters in TDTbin2mat to look at smaller chunks of data.

data = TDTbin2mat('C:\TDT\TDTExampleData\Algernon-180308-130351', 'T2', 10);
TDTfft(data.streams.LFP1, 1, 'FREQ', [0, 100], 'NUMAVG', 20,'SPECPLOT', 1);

Overview of MATLAB Offline Analysis Tools | 10

See the LFP plot example for a full demonstration.

Overview of MATLAB Offline Analysis Tools | 11

lfp-plot-example/

TDTdigitalfilter

TDTdigitalfilter mimics the hardware digital filters in the Neural Stream Processor gizmo.

It takes the output of TDTbin2mat and applies the specified digital filter to the specified

streaming data store. Here is a simple DC-20 Hz bandpass filter example:

data = TDTbin2mat('C:\TDT\TDTExampleData\Algernon-180308-130351', 'T2', 10);
subplot(2,1,1);
plot(data.streams.Wav1.data(1,:));
data = TDTdigitalfilter(data, 'Wav1', [0, 20]); % look at 0-20 Hz only
subplot(2,1,2);
plot(data.streams.Wav1.data(1,:));

Overview of MATLAB Offline Analysis Tools | 12

https://www.tdt.com/docs/synapse/gizmos/neural-stream-processor/

Use the 'ORDER' input to set the filter order. By default it is a 2 for a second order filter.

data = TDTdigitalfilter(data, 'Wav1', [0, 20], 'ORDER', 8);

Overview of MATLAB Offline Analysis Tools | 13

You can also add a notch filter.

data = TDTdigitalfilter(data, 'Wav1', 'NOTCH', 60, 'ORDER', 4);

Overview of MATLAB Offline Analysis Tools | 14

TDTthresh

TDTthresh takes continuous data and applies a thresholding algorithm to extract snippets. It

has two modes, 'manual' and 'auto' . In 'manual' mode, supply the absolute threshold

input 'THRESH' to extract snippets. Can be negative for negative-first spike detection.

In 'auto' mode, a multiple of the sliding RMS window is used to calculate the instantaneous

threshold. Set the 'TAU' parameter to specify the time window, and set the 'STD' parameter

to set the scalar. So if TAU=5 and STD=6, then the threshold will track 6*RMS of the previous 5

seconds.

The new snippet store generated from TDTthresh is called 'Snip' .

You can set the 'TETRODE' flag to extract snippets organized by groups of 4 channels. If the

threshold crosses on one channel, all 4 channels will get a snippet.

TDTthresh has a few more customizations you can explore in its help documentation.

See the Rethreshold Example for a complete demonstration of TDTdigitalfilter and

TDTthresh .

data = TDTbin2mat('C:\TDT\TDTExampleData\Algernon-180308-130351', 'T2', 10);
data = TDTdigitalfilter(data, 'Wav1', [300 5000]);
data = TDTthresh(data, 'Wav1', 'MODE', 'auto');
subplot(2,1,1);
plot(data.streams.Wav1.data(1,:));
subplot(2,1,2);
plot(data.snips.Snip.data');

>> help TDTthresh

Overview of MATLAB Offline Analysis Tools | 15

filter-and-threshold-raw-data-into-snippets/

TDT Data Storage

Data collected or used by TDT software is stored in tanks - special directories on your hard

drive. Each time you press 'Record' in Synapse, a new block is created within the tank. Within a

block different stores can record different types of events at different rates. The blocks are

special folders within the tank directories.

TDT Data Types

epocs are values stored with onset and offset timestamps that can be used to create time-

based filters on your data. They can be created by the Epoch Data Storage gizmo, Logic

gizmos, Stimulation gizmos, and many more.

If Runtime Notes were enabled in Synapse, they will appear in data.epocs.Note . The

notes themselves will be in data.epocs.Note.notes .

See the Synapse Manual for more information on Runtime Notes.

streams are continuous single channel or multichannel recordings, like those stored by the

Stream Data Storage gizmo, the Fiber Photometry gizmo, and many others. The structure

includes the data array and sampling rate.

snips are short snippets of data collected on a trigger. For example, action potentials

recorded around threshold crossings in the Spike Sorting gizmos, or fixed duration snippets

recorded by the Strobe Store gizmo. This structure includes the waveforms, channel

numbers, sort codes, trigger timestamps, and sampling rate.

scalars are similar to epocs but can be single or multi-channel values and only store an

onset timestamp when triggered. These can be created by the Strobe Store gizmo.

The returned structure also contains an info field with block start/stop times, duration, and

information about the Subject, User, and Experiment that it came from (if the block was

created in Synapse).

1.

a.

2.

3.

4.

TDT Data Storage | 16

https://www.tdt.com/docs/synapse/gizmos/epoch-event-storage/
https://www.tdt.com/docs/synapse/gizmos/categories/#logic-gizmos
https://www.tdt.com/docs/synapse/gizmos/categories/#logic-gizmos
https://www.tdt.com/docs/synapse/gizmos/categories/#stimulation-gizmos
https://www.tdt.com/docs/synapse/hardware/rz-and-rx-processors/#main-tab
https://www.tdt.com/docs/synapse/gizmos/stream-data-storage/
https://www.tdt.com/docs/synapse/gizmos/fiber-photometry-for-rz10x-processor/
https://www.tdt.com/docs/synapse/gizmos/categories/#neural-gizmos
https://www.tdt.com/docs/synapse/gizmos/strobed-data-storage/
https://www.tdt.com/docs/synapse/gizmos/strobed-data-storage/

Merging Blocks

There is a tool called TankManager that installs with Synapse that allows you to concatenate

blocks directly on disk. This can create a 'super block' by combining the snippets / epocs

events from multiple blocks into a single block before you export the data to another format or

import to OpenSorter. It shifts the timestamps of the second block (it adds ~10 second gap in

between the recordings so there is no overlap).

TankManager is a command line executable. The format for merging blocks is:

Replace the text with the two block names that you want to merge.

Here is an example that merges the two blocks called Subject1-210909-114930 and

Subject1-210909-114948 in the tank F:\Tanks\Experiment359-210909-114930 into a new

block called output_block inside that same tank:

Press the Windows key (or Windows + R) and type cmd to enter the command line.

Change directory into your tank folder.

Run the TankManager command. In this example, it is

This makes a new block called output_block inside the same tank folder, which you can then

use like any other block.

C:\TDT\Synapse\TankManager.exe --load block1 --load block2 --save outputblock

1.

2.

3.

C:\TDT\Synapse\TankManager.exe --load "Subject1-210909-114930" --load
"Subject1-210909-114948" --save "output_block"

TDT Data Storage | 17

Splitting Blocks

You can extract time ranges of blocks and export them to smaller blocks using the same

TankManager utility described above. This works best with snippet, epoc, and scalar data

types.

Here's an example that will keep the data from time t=5s to t=10s from the block C:

\BLOCKPATH and write it to a new block called C:\BLOCKPATH_5_10 :

For example, you could use this to split up your blocks into hour long chunks like this:

And so on. The data in these new blocks won't start until the first timestamp, so for later

blocks there will be a large gap in the beginning. If you have an issue reading it with

OpenSorter or another of our data utilities you might try following the steps in Tech Note

TN0909.

C:\TDT\Synapse\TankManager -l "C:\BLOCKPATH" -k "5-10" -s "C:\BLOCKPATH_5_10"

C:\TDT\Synapse\TankManager -l "C:\BLOCKPATH" -k "0-3600" -s "C:\BLOCKPATH_0hr"
C:\TDT\Synapse\TankManager -l "C:\BLOCKPATH" -k "3600-7200" -s "C:
\BLOCKPATH_1hr"

You might get a message during the block creation that says Failed to set the system attribute on the

block . It is okay to ignore this.

Note

TDT Data Storage | 18

https://www.tdt.com/docs/technotes/tn/TN0909/
https://www.tdt.com/docs/technotes/tn/TN0909/

Importing TDT Data into MATLAB for Offline
Analysis

TDT provides a set of cross-platform tools for reading TDT data files directly into MATLAB

offline. It is compatible with MATLAB 2007b and greater.

Requirements

MATLAB 2007b and greater

Installation

Just follow these three steps to get started:

Download the MATLAB SDK (zip) and extract the files into a directory on your computer, like

C:\TDT\TDTMatlabSDK .

Download Example Data. Extract the example data files into the 'Examples' folder in the SDK.

Add the path to the unzipped MATLAB tools directory.

Importing data is easy

1.

1.

2.

3.

SDKPATH = 'C:\TDT\TDTMatlabSDK'; % or whatever path you extracted the SDK
zip into
addpath(genpath(SDKPATH));

4.

data = TDTbin2mat('path/to/block');

Importing TDT Data into MATLAB for Offline Analysis | 19

https://www.tdt.com/files/examples/TDTMatlabSDK.zip
https://www.tdt.com/files/examples/TDTExampleData.zip

Example Workbooks

Averaging Example

Import stream and epoc data into MATLAB using TDTbin2mat

Plot the average waveform around the epoc event

Good for Evoked Potential detection

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Set up the variables for the data you want to extract. We will extract channel 3 from the LFP1

stream data store, created by the Neural Stream Processor gizmo, and use our PulseGen epoc

event ('PC0/') as our stimulus onset.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Algernon-180308-130351');

Example Workbooks | 20

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Averaging.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Averaging.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Averaging.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Averaging.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Averaging.m
https://www.tdt.com/files/examples/TDTExampleData.zip

Now read the specified data from our block into a MATLAB structure.

Use TDTfilter to extract data around our epoc event

Using the 'TIME' parameter extracts data only from the time range around our epoc event. For

stream events, the chunks of data are stored in cell arrays.

Optionally remove artifacts.

Applying a time filter to a uniformly sampled signal means that the length of each segment

could vary by one sample. Let's find the minimum length so we can trim the excess off before

calculating the mean.

Find the average signal.

REF_EPOC = 'PC0/';
STREAM_STORE = 'LFP1';
CHANNEL = 3;
ARTIFACT = Inf; % optionally set an artifact rejection level
TRANGE = [-0.3, 0.8]; % window size [start time relative to epoc onset,
window duration]

data = TDTbin2mat(BLOCKPATH, 'TYPE', {'epocs', 'scalars', 'streams'},
'CHANNEL', CHANNEL);

read from t=0.00s to t=61.23s

data = TDTfilter(data, REF_EPOC, 'TIME', TRANGE);

art1 = ~cellfun('isempty', cellfun(@(x) x(x>ARTIFACT), data.streams.
(STREAM_STORE).filtered, 'UniformOutput',false));
art2 = ~cellfun('isempty', cellfun(@(x) x(x<-ARTIFACT), data.streams.
(STREAM_STORE).filtered, 'UniformOutput',false));
good = ~art1 & ~art2;
data.streams.(STREAM_STORE).filtered = data.streams.
(STREAM_STORE).filtered(good);
numArtifacts = sum(~good);

minLength = min(cellfun('prodofsize', data.streams.(STREAM_STORE).filtered));
data.streams.(STREAM_STORE).filtered = cellfun(@(x) x(1:minLength),
data.streams.(STREAM_STORE).filtered, 'UniformOutput',false);

Example Workbooks | 21

Ready to plot

Create the time vector.

Plot all the signals as gray.

Plot vertical line at time=0.

allSignals = cell2mat(data.streams.(STREAM_STORE).filtered');
meanSignal = mean(allSignals);
stdSignal = std(double(allSignals));

ts = TRANGE(1) + (1:minLength) / data.streams.(STREAM_STORE).fs;

plot(ts, allSignals','Color', [.85 .85 .85]); hold on;

line([0 0], [min(allSignals(:)), max(allSignals(:))], 'Color', 'r',
'LineStyle','-', 'LineWidth', 3)

Example Workbooks | 22

Plot the average signal.

plot(ts, meanSignal, 'b', 'LineWidth', 3)

Example Workbooks | 23

Plot the standard deviation bands.

plot(ts, meanSignal+stdSignal, 'b--', ts, meanSignal-stdSignal, 'b--');

Example Workbooks | 24

Finish up the plot

axis tight
xlabel('Time, s','FontSize',12)
ylabel('V', 'FontSize', 12)
title(sprintf('%s %d Trials (%d Artifacts Removed)', STREAM_STORE,
numel(data.streams.(STREAM_STORE).filtered), numArtifacts))
set(gcf, 'Position',[100, 100, 800, 500])

Example Workbooks | 25

Example Workbooks | 26

LFP Plot Example

Import streaming LFP data into MATLAB using TDTbin2mat

Plot the power spectrum and RMS of the waveform

Good for sleep scoring and behavioral discrimination

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Let's pick the store name, channel, and how much data we want to extract, in seconds.

Now read channel 1 from all stream data into a MATLAB structure called 'data'.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Algernon-180308-130351');

STORE = 'LFP1';
CHANNEL = 1;
T2 = 10;

Example Workbooks | 27

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LFPPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LFPPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LFPPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LFPPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LFPPlot.m
https://www.tdt.com/files/examples/TDTExampleData.zip

And that's it! Your data is now in MATLAB. The rest of the code is a plotting example.

LFP Analysis

Let's create a power spectrum and spectrogram plot of our data in the 0-300 Hz range.

data = TDTbin2mat(BLOCKPATH, 'TYPE', {'streams'}, 'STORE', STORE, 'CHANNEL',
CHANNEL, 'T2', T2);

read from t=0.00s to t=10.00s

TDTfft(data.streams.(STORE), 1, 'SPECPLOT', 1, 'FREQ', [0 300]);

% Make the figure larger
set(gcf,'Position',[100 100 750 800])

Example Workbooks | 28

Example Workbooks | 29

Note Filter Example

Import streaming EEG data into MATLAB using TDTbin2mat

Filter around behavioral events that were timestamped by the user

using the Run-time Notes feature in Synapse

Plot each occurrence in a subplot organized by Note type

Good for sleep scoring and behavioral discrimination

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Set up the variables for the data you want to extract. We will extract channel 1 from the EEG1

stream store.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Subject1-180426-120951');

Example Workbooks | 30

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/NoteFilter.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/NoteFilter.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/NoteFilter.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/NoteFilter.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/NoteFilter.m
https://www.tdt.com/files/examples/TDTExampleData.zip

Now read the specified data from our block into a MATLAB structure.

All notes are stored in a special epoc event called 'Note'

STORE = 'EEG1';
CHANNEL = 1;
ONSET = -3; % relative onset, in seconds, from the note timestamp

data = TDTbin2mat(BLOCKPATH, 'CHANNEL', CHANNEL);

Found Synapse note file: C:
\TDT\TDTMatlabSDK\Examples\ExampleData\Subject1-180426-120951\Notes.txt
read from t=0.00s to t=31.81s

% find all the unique note values
notes = unique(data.epocs.Note.notes);

% find the highest number of occurrences (to inform our plot)
maxOccur = max(cell2mat(cellfun(@(x)
sum(ismember(data.epocs.Note.notes,x)),notes,'un',0)));

Example Workbooks | 31

Loop through the notes for plotting

h = figure;
for i = 1:numel(notes)

 fprintf('Reading note: %s\n', notes{i})

 % look at only the data around this note type
 filtered = TDTfilter(data, 'Note', 'VALUES', notes{i}, 'TIME', ONSET);

 % for each note occurrence, plot the data from the note onset to the next
note onset
 n = numel(filtered.streams.(STORE).filtered);
 for j = 1:n
 plotInd = (j-1)*numel(notes)+i;
 subplot(maxOccur,numel(notes),plotInd);

 % x-axis is the valid time ranges, in seconds
 ts = filtered.time_ranges(1,j) + double(1:size(filtered.streams.
(STORE).filtered{j},2))/filtered.streams.(STORE).fs;

 % plot the snippet, in microvolts
 plot(ts, 1e6*filtered.streams.(STORE).filtered{j}'); hold on;

 % if we specified an ONSET, draw the vertical line at the note onset.
 if ONSET ~= 0
 line((ts(1)-ONSET)*[1 1], [min(1e6*filtered.streams.
(STORE).filtered{j}') max(1e6*filtered.streams.(STORE).filtered{j}')],
'Color',[.7 .7 .7], 'LineStyle','-', 'LineWidth', 3);
 end

 % plot labels
 if j == 1
 title(notes{i},'FontSize',14)
 elseif j == n
 if i == 1
 ylabel('\muV','FontSize',12)
 xlabel('time, s','FontSize',12)
 end
 end
 axis tight;
 end
end

set(gcf, 'Position',[100, 100, 1000, 500])

Example Workbooks | 32

Reading note: grooming
Reading note: moving
Reading note: sleep

Example Workbooks | 33

Raster Peristimulus Time Histogram (PSTH) Example

Import snippet and epoc data into MATLAB using TDTbin2mat

Generate peristimulus raster and histogram plots over all trials

Good for stim-response experiments, such as optogenetic or electrical

stimulation

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Set up the variables for the data you want to extract. We will extract channel 1 from the eNe1

snippet data store, created by the PCA Sorting gizmo, and use our PulseGen epoc event

('PC0/') as our stimulus onset.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Algernon-180308-130351');

Example Workbooks | 34

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Raster_PSTH.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Raster_PSTH.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Raster_PSTH.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Raster_PSTH.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Raster_PSTH.m
https://www.tdt.com/files/examples/TDTExampleData.zip

Now read the specified data from our block into a MATLAB structure. The 'NODATA' flag means

that we are only interested in the snippet timestamps, not the actual snippet waveforms in this

example.

Use TDTfilter to extract data around our epoc event

Using the 'TIME' parameter extracts data only from the time range around our epoc event.

Adding the 'TIMEREF' flag makes all of the timestamps relative to the epoc event, which is

ideal for generating histograms.

And that's it! Your data is now in MATLAB. The rest of the code is a simple plotting example.

First, we'll find matching timestamps for our selected sort code (unit).

REF_EPOC = 'PC0/';
SNIP_STORE = 'eNe1';
SORTID = 'TankSort';
CHANNEL = 3;
SORTCODE = 0; % set to 0 to use all sorts
TRANGE = [-0.3, 0.8]; % window size [start time relative to epoc onset,
window duration]

data = TDTbin2mat(BLOCKPATH, 'TYPE', {'epocs', 'snips', 'scalars'},
'SORTNAME', SORTID, 'CHANNEL', CHANNEL, 'NODATA', 1);

read from t=0.00s to t=61.23s

raster_data = TDTfilter(data, REF_EPOC, 'TIME', TRANGE);

hist_data = TDTfilter(data, REF_EPOC, 'TIME', TRANGE, 'TIMEREF', 1);

TS = raster_data.snips.(SNIP_STORE).ts;
if SORTCODE ~= 0
 i = find(raster_data.snips.(SNIP_STORE).sortcode == SORTCODE);
 TS = TS(i);
end
if isempty(TS)
 error('no matching timestamps found')
end

num_trials = size(raster_data.time_ranges, 2);

Example Workbooks | 35

Make the histogram plot

figure('Position',[100, 100, 500, 800]);

hist_TS = hist_data.snips.(SNIP_STORE).ts;
subplot(2,1,1);
NBINS = floor(numel(hist_TS)/10);
hist(hist_TS, NBINS);
N = hist(hist_TS, NBINS); hold on;

axis tight; axis square;
set(gca, 'XLim', [TRANGE(1), TRANGE(1)+TRANGE(2)]);
ylabel('Count','FontSize',16);
title({'Peristimulus', sprintf('Channel %d, n = %d trials', CHANNEL,
num_trials)});

% Draw a vertical line at t=0.
line([0 0], [0, max(N)], 'Color','r', 'LineStyle','-', 'LineWidth', 3);

% Creating the Raster Plot
% For the raster plot, make a cell array of timestamps for each trial.
all_TS = cell(num_trials, 1);
all_Y = cell(num_trials, 1);
for trial = 1:num_trials
 trial_on = raster_data.time_ranges(1, trial);
 trial_off = raster_data.time_ranges(2, trial);
 trial_TS = TS(TS >= trial_on & TS < trial_off);
 all_TS{trial} = trial_TS - trial_on + TRANGE(1);
 all_Y{trial} = trial * ones(numel(trial_TS), 1);
end
all_X = cat(1, all_TS{:});
all_Y = cat(1, all_Y{:});

% Make the raster plot.
subplot(2,1,2);
plot(all_X, all_Y, '.', 'MarkerEdgeColor','k', 'MarkerSize',15); hold on;
axis tight; axis square;
set(gca, 'XLim', [TRANGE(1), TRANGE(1)+TRANGE(2)]);
xlabel('Trial Window, s','FontSize',16);
ylabel('Trial Number','FontSize',16);
title({'Raster', sprintf('Channel %d, n = %d trials', CHANNEL, num_trials)});

% Draw a vertical line at t=0.
line([0 0], [0, trial+1], 'Color','r', 'LineStyle','-', 'LineWidth', 3);

Example Workbooks | 36

Example Workbooks | 37

Filter and Threshold Raw Data Into Snippets

Import raw streaming data into MATLAB using TDTbin2mat

Digitally filter the single unit data using TDTdigitalfilter

Threshold and extract snippets using TDTthresh

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Set up the variables for the data you want to extract. We will extract channel 1 from the Wav1

data store, created by the Stream Data Storage gizmo, and apply our threshold at -125 uV to

create 30 sample snippets.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Algernon-180308-130351');

Example Workbooks | 38

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Rethreshold.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Rethreshold.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Rethreshold.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Rethreshold.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/Rethreshold.m
https://www.tdt.com/files/examples/TDTExampleData.zip

Now read the specified data from our block into a MATLAB structure.

Use TDTdigitalfilter to filter the streaming waveforms

We are interested in single unit activity in the 300-5000 Hz band.

Use TDTthresh to extract snippet events

Mode is set to 'manual' in this example for extracting snippets around a hard threshold.

And that's it! Your data is now in MATLAB and thresholded. TDTthresh adds a new store into

the data structure called data.snips.Snip that we will now use for plotting. First, we'll get some

properties of the snippets that we'll use later for scatter plots

STORE = 'Wav1';
CHANNEL = 1;
THRESH = -125e-6; % define snippet when it crosses this threshold
NPTS = 30; % size of the snippet
OVERLAP = 0; % set to 1 to allow double crossings within same window to count
as a different snippet

data = TDTbin2mat(BLOCKPATH, 'STORE', STORE, 'CHANNEL', CHANNEL);

read from t=0.00s to t=61.23s

su = TDTdigitalfilter(data, STORE, [300 5000]);

su = TDTthresh(su, STORE, 'MODE', 'manual', 'THRESH', THRESH, 'NPTS', NPTS,
'OVERLAP', OVERLAP);

% You could also use 'auto' detection, which sets a moving threshold base
% on a multiple of the RMS of a previous time period. For example,
% set the threshold at 6*RMS of the previous 5 seconds of data
%su = TDTthresh(su, STORE, 'MODE', 'auto', 'POLARITY', -1, 'STD', 6, 'TAU',
5);

window size is 30, without overlap.
using absolute threshold method, set to -125.00 uV.

Example Workbooks | 39

Begin plotting

Plot the single unit data with snippet overlay.

Plot the threshold line.

maxvals = max(su.snips.Snip.data, [], 2)*1e6;
minvals = min(su.snips.Snip.data, [], 2)*1e6;

subplot(2,3,[1 2 3])
ts = (1:numel(su.streams.(STORE).data(1,:)))/su.streams.(STORE).fs;
plot(ts, su.streams.(STORE).data(1,:)*1e6, 'color', [.7 .7 .7]);
axis([ts(1) ts(end) min(minvals) max(maxvals)]); ax1 = axis();
hold on;

% Position the figure
set(gcf, 'Position', [100 100 1000 700])

Example Workbooks | 40

Define a color map based on the minimum values. The dots are not colored by any complex

sorting algorithm, just by magnitude. We'll use this coloring to track the snippets through the

rest of the plots. This uses the vals2colormap function, which can be found at: <https://

github.com/vistalab/vistateach/blob/master/cogneuro/tutorial1_timeseries/

vals2colormap.m>.

Overlay the min values as dots on the streaming plot.

if numel(su.snips.Snip.thresh) == 1
 thresh = su.snips.Snip.thresh*ones(size(ts));
else
 thresh = su.snips.Snip.thresh;
end
plot(ts, thresh*1e6, 'r--', 'LineWidth', 2)
ylabel('uV');
xlabel('time (s)');

colors = vals2colormap(minvals, 'spring', [min(minvals)*.9 max(minvals)]);

Example Workbooks | 41

https://github.com/vistalab/vistateach/blob/master/cogneuro/tutorial1_timeseries/vals2colormap.m
https://github.com/vistalab/vistateach/blob/master/cogneuro/tutorial1_timeseries/vals2colormap.m
https://github.com/vistalab/vistateach/blob/master/cogneuro/tutorial1_timeseries/vals2colormap.m

Plot the extracted snippets.

scatter(su.snips.Snip.ts, minvals, 10, colors, 'filled');

legend({'stream', 'threshold', 'spike'});
% add a fancy latex title
title(['\fontsize{14} Filtering and Re-thresholding Raw Data' char(10) ...
 '\fontsize{12} Filtered Single Unit Data'],'interpreter','tex');

% Alternatively, overlay entire snippets on time window.
%npts = size(su.snips.Snip.data,2);
%for ii = 1:size(su.snips.Snip.data, 1)
% plot(su.snips.Snip.ts(ii)+((1:npts)-floor(npts/4))/su.snips.Snip.fs,
su.snips.Snip.data(ii,:)*1e6, 'color', colors(ii,:));
%end

subplot(2,3,4)
hold on;
for ii = 1:size(su.snips.Snip.data, 1)
 plot(su.snips.Snip.data(ii,:)*1e6, 'color', colors(ii,:));
end
axis tight;
xlabel('samples')
ylabel('uV')
title(sprintf('Extracted snippets, N=%d', ii), 'FontSize', 12)

Example Workbooks | 42

Do Min/Max k-Means and PCA analysis

Plot snippets in a simple feature space.

subplot(2,3,5)
scatter(minvals, maxvals, 8, colors, 'filled')
xlabel('Min Value (uV)')
ylabel('Max Value (uV)')
title('Min/Max k-means', 'FontSize', 12)
hold on;

Example Workbooks | 43

Do k-means for 3 clusters.

Plot centroids and cluster circles

rand('seed', 1); % for reproducibility
[idx, C] = kmeans([minvals, maxvals], 3);

Example Workbooks | 44

Plot snippets in PCA space.

for ii = 1:max(idx)

 % plot centroid
 scatter(C(ii,1), C(ii,2), 30, '*k');

 % find spike with max distance from center to use as radius for circle
 x_center = C(ii, 1);
 y_center = C(ii, 2);
 curr_mins = minvals(idx==ii);
 curr_maxs = maxvals(idx==ii);
 dist = sqrt((curr_mins - x_center).^2 + (curr_maxs - y_center).^2);
 r = max(dist);

 % plot circle
 th = 0:pi/50:2*pi;
 xunit = r * cos(th) + x_center;
 yunit = r * sin(th) + y_center;
 plot(xunit, yunit, '--');
end
legend({'spikes','centroids'})

Example Workbooks | 45

subplot(2,3,6)
hold on;
try
 [coeff,score,latent] = pca(su.snips.Snip.data); % newer MATLAB uses this
catch
 [coeff,score,latent] = princomp(su.snips.Snip.data);
end

[idx3, C3] = kmeans(score(:,1:3), 3);
for ii = 1:max(idx3)

 % apply sort codes to our data
 su.snips.Snip.sortcode(idx3==ii) = ii;

 % get principle components and color for this cluster
 pca1 = score(idx3==ii,1);
 pca2 = score(idx3==ii,2);
 pca3 = score(idx3==ii,3);
 color = colors(idx3==ii,:);

 % plot dots
 scatter3(pca1, pca2, pca3, 15, color, 'filled')

 % plot centroid
 %scatter3(C3(ii,1), C3(ii,2), C3(ii,3), 75, 'k', 'filled');
end
axis tight;
view([-15 25]); % set initial view on 3-D plot
title('PCA feature space', 'FontSize', 12)

% keep sort code 1 only
idx = su.snips.Snip.sortcode == 1;
su.snips.Snip.sortcode(~idx) = [];
su.snips.Snip.ts(~idx) = [];

Example Workbooks | 46

Example Workbooks | 47

Snippet Plot Example

Import snippet data into MATLAB using TDTbin2mat

Sort snippets based on channel number and sort code for any number of channels and sort

codes

Plot the average waveform shape and standard deviation for 16 channels and three sort codes

Good for spike sorting and first-pass visualization of sorted waveforms

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Now read snippet data into a MATLAB structure called 'data'.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Algernon-180308-130351');

data = TDTbin2mat(BLOCKPATH, 'TYPE', {'snips'});

read from t=0.00s to t=61.23s

Example Workbooks | 48

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/SnipPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/SnipPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/SnipPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/SnipPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/SnipPlot.m
https://www.tdt.com/files/examples/TDTExampleData.zip

And that's it! Your data is now in MATLAB. The rest of the code describes sorting snippets

based on channel number and sort code, then plotting a subselection of three sort codes.

Spike Snippet Sorting

Collect waveforms, averages, standard deviation, and snippet times of all snippets, sorted by

channel and sortcode number.

Example Workbooks | 49

% Note: If you want a pile plot of *ALL* snippets (every channel), use this:
% figure;
% plot(samples, data.snips.eNe1.data(:,:));

% Pull field name as string from snip store
SNIP_STORE = fieldnames(data.snips);
SNIP_STORE = SNIP_STORE{1};

% Useful variables
numchans = single(max(data.snips.(SNIP_STORE).chan));
if numchans > 64
 warning('This display function is only good for 64 channels or fewer.
Truncating to 64 channels');
 numchans = 64;
end

nsamples = length(data.snips.(SNIP_STORE).data(1,:));
sorts = sort(unique(data.snips.(SNIP_STORE).sortcode))';

% Remove unsorted and outliers from analysis unless it's the only one
if numel(sorts) ~= 1
 sorts(sorts==0 | sorts==31) = [];
end

% Declare stores for sort codes, averages, standard deviations, and timestamps
sorted_stores = cell(numchans, numel(sorts));
store_averages = cell(numchans, numel(sorts));
sorted_stdp = cell(numchans, numel(sorts));
sorted_stdn = cell(numchans, numel(sorts));
snip_times = cell(numchans, numel(sorts));
snip_isi = cell(numchans, numel(sorts));

% Filter based on channel and sort code
for chan = 1:numchans
 for sort_ind = 1:numel(sorts)
 sort_code = sorts(sort_ind);
 % Create index for data that matches current channel and sortcode
 i = find(data.snips.(SNIP_STORE).chan == chan & data.snips.
(SNIP_STORE).sortcode == sort_code);
 sorted_stores{chan, sort_code} = 1e6*data.snips.
(SNIP_STORE).data(i,:); % scaled to uV
 store_averages{chan, sort_code} = sum(sorted_stores{chan, sort_code}/
length(sorted_stores{chan, sort_code}));
 if size(sorted_stores{chan, sort_code}, 1) > 1
 sorted_stdp{chan, sort_code} = std(sorted_stores{chan, sort_code})
+ store_averages{chan, sort_code};
 sorted_stdn{chan, sort_code} = store_averages{chan, sort_code} -
std(sorted_stores{chan, sort_code});
 else
 sorted_stdp{chan, sort_code} = zeros(1, size(sorted_stores{chan,

Example Workbooks | 50

Generate an ISI histogram for selected channels

Look at ISI histogram for first 3 sort codes

sort_code},2));
 sorted_stdn{chan, sort_code} = zeros(1, size(sorted_stores{chan,
sort_code},2));
 end
 % Find timestamps of snips
 snip_times{chan, sort_code} = data.snips.(SNIP_STORE).ts(i);

 % Inter-spike Interval of sorted snips
 snip_isi{chan,sort_code} = diff(snip_times{chan,sort_code});
 end
end

% Use this code block to extract unsorted and outlier snips
% unsorted = cell(numchans,1);
% outliers = cell(numchans,1);
%
% for CHANNEL = 1:numchans
% i = data.snips.(SNIP_STORE).chan == CHANNEL & data.snips.
(SNIP_STORE).sortcode == 0;
% unsorted{CHANNEL, 1} = data.snips.(SNIP_STORE).data(i,:);
%
% j = data.snips.(SNIP_STORE).chan == CHANNEL & data.snips.
(SNIP_STORE).sortcode == 31;
% outliers{CHANNEL, 1} = data.snips.(SNIP_STORE).data(j,:);
% end

Example Workbooks | 51

PLOT_CHANS = [11]; % change to 1:numchans to plot all of them

ax = cell(1,3);
for chan = PLOT_CHANS
 figure('Name','ISI Histograms','Position',[900, 100, 500, 800]);
 for sort_ind = 1:size(snip_isi,2)
 % skip sort code if there are none
 if size(snip_isi{chan, sort_ind},1) == 0, continue, end

 % make histogram on new subplot
 ax{sort_ind} = subplot(3,1,sort_ind);
 hist(snip_isi{chan,sort_ind});

 if sort_ind == 1
 title(sprintf('Channel %d ISI Histograms',chan),'FontSize',12)
 xlabel('Seconds','FontSize',16)
 end
 ylabel(sprintf('Sort Code %d',sorts(sort_ind)),'FontSize',16)
 axis square
 end
 linkaxes([ax{:}],'xy');
end

Example Workbooks | 52

Example Workbooks | 53

Waveform Plots

Create filled waveform plots with channels and sortcodes

Waveforms will be the average waveform of all snippets for each sortcode for each channel,

with a standard deviation fill around it

Note: The plot below uses up to 64 channels and 3 sort codes but can be modified

Example Workbooks | 54

% Samples array for x-axis of fill plots
sample_arr = 1:nsamples;
XX = [sample_arr, fliplr(sample_arr)];

% set plot locations based on channel count
numcols = double(ceil(sqrt(numchans)));
numrows = double(ceil(numchans/numcols));
spc = sqrt(numrows*numcols)+1.5;
indt1 = 1/(numrows*numrows);
indt2 = 0.8-indt1;

h = figure('Name','Sorted Spike Snippets','Position', [100, 100, 800, 800]);

% Add master title to subplots using figure uicontrol
uicontrol('Style','text','String','Sorted Spike Snippets',...
 'FontSize',20','HorizontalAlignment','center','Units','normalized',...
 'Position', [0 .93 1 .05],'BackgroundColor',[1 1 1]);

% Default colors for sort codes 1, 2, 3
colors = {[0.9290, 0.6940, 0.1250],[0.6350, 0.0780, 0.1840],[0, 0.75, 0.75]};

max_axis = zeros(1,4);
ax = zeros(1, numchans);

row = 1;
col = 1;
last_sort = min(size(snip_isi,2),3);
for chan = 1:numchans
 for sort_ind = 1:last_sort
 % Used for filling Std Dev in with Fill later
 YY = [sorted_stdp{chan,sort_ind}, fliplr(sorted_stdn{chan,sort_ind})];

 pos = [col/spc-indt1 indt2-(row-1)/spc 1/spc 1/spc];
 ax(chan) = subplot('Position',pos);

 % create an empty axis if no sort codes found
 if all(cell2mat(store_averages(chan,1:last_sort)) == 0) && sort_ind ==
last_sort
 plot(zeros(size(store_averages{chan,sort_ind})),'w','LineWidth',
1);
 else
 if ~all(store_averages{chan,sort_ind} == 0)
 % Std dev fill around averaged waveform
 h = fill(XX, YY, colors{sort_ind});
 set(h, 'facealpha', .15); %set transparency of fill plot
 hold on;

plot(store_averages{chan,sort_ind},'color',colors{sort_ind},'LineWidth',1);
 end
 end

Example Workbooks | 55

 if sort_ind == last_sort
 % Channel labels
 text(15-sqrt(col), -200, sprintf('Ch %d',chan), 'FontSize', 14/
((numrows^(1/3))));
 axis square;
 axis tight;
 end

 % Only add axis labels on left column and bottom row
 if row == numrows && col == 1
 xlabel('Samples','FontSize',16/((numrows^(1/8))));
 ylabel('Amplitude (\muV)','FontSize',16/((numrows^(1/8))));
 else
 % Get rid of the numbers but leave the ticks.
 set(ax(chan),'Xticklabel',[]);
 set(ax(chan),'Yticklabel',[]);
 end
 end

 % fill one row at a time, go to the next row when col == numcols
 if col == numcols
 row = row+1;
 col = 1;
 else
 col = col+1;
 end

end
% use same axes for all plots
linkaxes(ax, 'xy');

Example Workbooks | 56

Example Workbooks | 57

Stream Plot Example

Import continuous data into MATLAB using TDTbin2mat

Plot a single channel of data with various filtering schemes

Good for first-pass visualization of streamed data

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Now read channel 1 from all stream data into a MATLAB structure called 'data'.

And that's it! Your data is now in MATLAB. The rest of the code is a simple plotting example.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Algernon-180308-130351');

data = TDTbin2mat(BLOCKPATH, 'TYPE', {'streams', 'epocs'}, 'CHANNEL', 1);

read from t=0.00s to t=61.23s

Example Workbooks | 58

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamPlot.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamPlot.m
https://www.tdt.com/files/examples/TDTExampleData.zip

Stream Store Plotting

Let's create time vectors for each stream store for plotting in time.

time_Wav1 = (1:length(data.streams.Wav1.data))/data.streams.Wav1.fs;
time_LFP1 = (1:length(data.streams.LFP1.data))/data.streams.LFP1.fs;
time_pNe1 = (1:length(data.streams.pNe1.data))/data.streams.pNe1.fs;

ax1 = subplot(3,1,1);
plot(time_Wav1, data.streams.Wav1.data(1,:)*1e6,'b');
axis tight;
title({'Basic Data Plotting: Ch 1','Raw Waveform'},'FontSize',14)
xlim([25 30]);

ax2 = subplot(3,1,2);
plot(time_LFP1, data.streams.LFP1.data(1,:)*1e6,'r');
title('LFP Waveform','FontSize',14);

ax3 = subplot(3,1,3);
plot(time_pNe1, data.streams.pNe1.data(1,:),'k');
title('Plot Decimated Spikes','FontSize',14);

ax = [ax1, ax2, ax3];
axis([ax1 ax2], 'tight')
linkaxes(ax, 'x')
xlim(ax(end), [25 30]);
xlabel(ax(end), 'Time (s)','FontSize',12)
ylabel(ax(2), 'Amplitude (\muV)','FontSize',12);

% Enlarge figure.
set(gcf, 'Units', 'centimeters', 'OuterPosition', [10, 10, 20, 20]);

Example Workbooks | 59

Epoc Events

Generate continuous time series for epoc data using epoc timestamps

Make a time series waveform of epoc values and plot them.

% StimSync epoc event
STIMSYNC = 'PC0_';
pc0_on = data.epocs.(STIMSYNC).onset;
pc0_off = data.epocs.(STIMSYNC).offset;
pc0_x = reshape(kron([pc0_on, pc0_off], [1, 1])', [], 1);

sz = length(pc0_on);
d = data.epocs.(STIMSYNC).data';
pc0_y = reshape([zeros(1, sz); d; d; zeros(1, sz)], 1, []);
hold on; plot(pc0_x, 200*(pc0_y) - 800, 'g', 'LineWidth', 2);

Example Workbooks | 60

Example Workbooks | 61

Fiber Photometry Epoch Averaging Example

This example goes through fiber photometry analysis using techniques such as data

smoothing, bleach detrending, and z-score analysis.

The epoch averaging was done using TDTfilter.

Author Contributions:

TDT, David Root, and the Morales Lab contributed to the writing and/or conceptualization of

the code.

The signal processing pipeline was inspired by the workflow developed by David Barker et al.

(2017) for the Morales Lab.

The data used in the example were provided by David Root.

Author Information:

David H. Root

Assistant Professor

Department of Psychology & Neuroscience

University of Colorado, Boulder

Lab Website: https://www.root-lab.org

david.root@colorado.edu

About the authors:

The Root lab and Morales lab investigate the neurobiology of reward, aversion, addiction, and

depression.

TDT edits all user submissions in coordination with the contributing author(s) prior to

publishing.

 Download M File

Example Workbooks | 62

https://doi.org/10.1016/j.celrep.2017.10.066
https://doi.org/10.1016/j.celrep.2017.10.066
https://www.root-lab.org
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/EpocAveragingExampleDR.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/EpocAveragingExampleDR.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/EpocAveragingExampleDR.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/EpocAveragingExampleDR.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/EpocAveragingExampleDR.m

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Setup the variables for the data you want to extract

We will extract two different stream stores surrounding the 'PtAB' epoch event. We are

interested in a specific event code for the shock onset.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'FiPho-180416');

REF_EPOC = 'PtAB'; % event store name. This holds behavioral codes that are
% read through Ports A & B on the front of the RZ
SHOCK_CODE = 64959; % shock onset event code we are interested in
STREAM_STORE1 = 'x4054'; % name of the 405 store
STREAM_STORE2 = 'x4654'; % name of the 465 store
TRANGE = [-10 20]; % window size [start time relative to epoc onset, window
duration]
BASELINE_PER = [-10 -6]; % baseline period within our window
ARTIFACT = Inf; % optionally set an artifact rejection level

% Now read the specified data from our block into a MATLAB structure.
data = TDTbin2mat(BLOCKPATH, 'TYPE', {'epocs', 'scalars', 'streams'});

read from t=0.00s to t=583.86s

Example Workbooks | 63

https://www.tdt.com/files/examples/TDTExampleData.zip

Use TDTfilter to extract data around our epoc event

Using the 'TIME' parameter extracts data only from the time range around our epoc event. Use

the 'VALUES' parameter to specify allowed values of the REF_EPOC to extract. For stream

events, the chunks of data are stored in cell arrays structured as data.streams.

(STREAM_STORE1).filtered

Optionally remove artifacts. If any waveform is above ARTIFACT level, or below -ARTIFACT

level, remove it from the data set.

Applying a time filter to a uniformly sampled signal means that the length of each segment

could vary by one sample. Let's find the minimum length so we can trim the excess off before

calculating the mean.

data = TDTfilter(data, REF_EPOC, 'VALUES', SHOCK_CODE, 'TIME', TRANGE);

art1 = ~cellfun('isempty', cellfun(@(x) x(x>ARTIFACT), data.streams.
(STREAM_STORE1).filtered, 'UniformOutput',false));
art2 = ~cellfun('isempty', cellfun(@(x) x(x<-ARTIFACT), data.streams.
(STREAM_STORE1).filtered, 'UniformOutput',false));
good = ~art1 & ~art2;
data.streams.(STREAM_STORE1).filtered = data.streams.
(STREAM_STORE1).filtered(good);

art1 = ~cellfun('isempty', cellfun(@(x) x(x>ARTIFACT), data.streams.
(STREAM_STORE2).filtered, 'UniformOutput',false));
art2 = ~cellfun('isempty', cellfun(@(x) x(x<-ARTIFACT), data.streams.
(STREAM_STORE2).filtered, 'UniformOutput',false));
good2 = ~art1 & ~art2;
data.streams.(STREAM_STORE2).filtered = data.streams.
(STREAM_STORE2).filtered(good2);

numArtifacts = sum(~good) + sum(~good2);

Example Workbooks | 64

minLength1 = min(cellfun('prodofsize', data.streams.
(STREAM_STORE1).filtered));
minLength2 = min(cellfun('prodofsize', data.streams.
(STREAM_STORE2).filtered));
data.streams.(STREAM_STORE1).filtered = cellfun(@(x) x(1:minLength1),
data.streams.(STREAM_STORE1).filtered, 'UniformOutput',false);
data.streams.(STREAM_STORE2).filtered = cellfun(@(x) x(1:minLength2),
data.streams.(STREAM_STORE2).filtered, 'UniformOutput',false);

allSignals = cell2mat(data.streams.(STREAM_STORE1).filtered');

% downsample 10x and average 405 signal
N = 10;
F405 = zeros(size(allSignals(:,1:N:end-N+1)));
for ii = 1:size(allSignals,1)
 F405(ii,:) = arrayfun(@(i) mean(allSignals(ii,i:i+N-1)),
1:N:length(allSignals)-N+1);
end
minLength1 = size(F405,2);

% Create mean signal, standard error of signal, and DC offset of 405 signal
meanSignal1 = mean(F405);
stdSignal1 = std(double(F405))/sqrt(size(F405,1));
dcSignal1 = mean(meanSignal1);

% downsample 10x and average 465 signal
allSignals = cell2mat(data.streams.(STREAM_STORE2).filtered');
F465 = zeros(size(allSignals(:,1:N:end-N+1)));
for ii = 1:size(allSignals,1)
 F465(ii,:) = arrayfun(@(i) mean(allSignals(ii,i:i+N-1)),
1:N:length(allSignals)-N+1);
end
minLength2 = size(F465,2);

% Create mean signal, standard error of signal, and DC offset of 465 signal
meanSignal2 = mean(F465);
stdSignal2 = std(double(F465))/sqrt(size(F465,1));
dcSignal2 = mean(meanSignal2);

Example Workbooks | 65

Plot Epoch Averaged Response

Example Workbooks | 66

% Create the time vector for each stream store
ts1 = TRANGE(1) + (1:minLength1) / data.streams.(STREAM_STORE1).fs*N;
ts2 = TRANGE(1) + (1:minLength2) / data.streams.(STREAM_STORE2).fs*N;

% Subtract DC offset to get signals on top of one another
meanSignal1 = meanSignal1 - dcSignal1;
meanSignal2 = meanSignal2 - dcSignal2;

% Plot the 405 and 465 average signals
figure;
subplot(4,1,1)
plot(ts1, meanSignal1, 'color',[0.4660, 0.6740, 0.1880], 'LineWidth', 3); hold
on;
plot(ts2, meanSignal2, 'color',[0.8500, 0.3250, 0.0980], 'LineWidth', 3);

% Plot vertical line at epoch onset, time = 0
line([0 0], [min(F465(:) - dcSignal2), max(F465(:)) - dcSignal2], 'Color', [.
7 .7 .7], 'LineStyle','-', 'LineWidth', 3)

% Make a legend
legend('405 nm','465 nm','Shock Onset', 'AutoUpdate', 'off');

% Create the standard error bands for the 405 signal
XX = [ts1, fliplr(ts1)];
YY = [meanSignal1 + stdSignal1, fliplr(meanSignal1 - stdSignal1)];

% Plot filled standard error bands.
h = fill(XX, YY, 'g');
set(h, 'facealpha',.25,'edgecolor','none')

% Repeat for 465
XX = [ts2, fliplr(ts2)];
YY = [meanSignal2 + stdSignal2, fliplr(meanSignal2 - stdSignal2)];
h = fill(XX, YY, 'r');
set(h, 'facealpha',.25,'edgecolor','none')

% Finish up the plot
axis tight
xlabel('Time, s','FontSize',12)
ylabel('mV', 'FontSize', 12)
title(sprintf('Foot Shock Response, %d Trials (%d Artifacts Removed)',
numel(data.streams.(STREAM_STORE1).filtered), numArtifacts))
set(gcf, 'Position',[100, 100, 800, 500])

% Heat Map based on z score of 405 fit subtracted 465

% Fitting 405 channel onto 465 channel to detrend signal bleaching
% Scale and fit data
% Algorithm sourced from Tom Davidson's Github:
% https://github.com/tjd2002/tjd-shared-code/blob/master/matlab/photometry/

Example Workbooks | 67

FP_normalize.m

bls = polyfit(F405(1:end), F465(1:end), 1);
Y_fit_all = bls(1) .* F405 + bls(2);
Y_dF_all = F465 - Y_fit_all;

zall = zeros(size(Y_dF_all));
for i = 1:size(Y_dF_all,1)
 ind = ts2(1,:) < BASELINE_PER(2) & ts2(1,:) > BASELINE_PER(1);
 zb = mean(Y_dF_all(i,ind)); % baseline period mean (-10sec to -6sec)
 zsd = std(Y_dF_all(i,ind)); % baseline period stdev
 zall(i,:)=(Y_dF_all(i,:) - zb)/zsd; % Z score per bin
end

% Standard error of the z-score
zerror = std(zall)/sqrt(size(zall,1));

% Plot heat map
subplot(4,1,2)

imagesc(ts2, 1, zall);
colormap('jet'); % c1 = colorbar;
title(sprintf('Z-Score Heat Map, %d Trials (%d Artifacts Removed)',
numel(data.streams.(STREAM_STORE1).filtered), numArtifacts));
ylabel('Trials', 'FontSize', 12);

% Fill band values for second subplot. Doing here to scale onset bar
% correctly
XX = [ts2, fliplr(ts2)];
YY = [mean(zall)-zerror, fliplr(mean(zall)+zerror)];

subplot(4,1,3)
plot(ts2, mean(zall), 'color',[0.8500, 0.3250, 0.0980], 'LineWidth', 3); hold
on;
line([0 0], [min(YY), max(YY)], 'Color', [.7 .7 .7], 'LineWidth', 2)

h = fill(XX, YY, 'r');
set(h, 'facealpha',.25,'edgecolor','none')

% Finish up the plot
axis tight
xlabel('Time, s','FontSize',12)
ylabel('Z-score', 'FontSize', 12)
title(sprintf('465 nm Foot Shock Response, %d Trials (%d Artifacts Removed)',
numel(data.streams.(STREAM_STORE1).filtered), numArtifacts))
%c2 = colorbar;

% Quantify changes as area under the curve for cue (-5 sec) and shock (0 sec)
AUC=[]; % cue, shock
AUC(1,1)=trapz(mean(zall(:,ts2(1,:) < -3 & ts2(1,:) > -5)));
AUC(1,2)=trapz(mean(zall(:,ts2(1,:) > 0 & ts2(1,:) < 2)));

Example Workbooks | 68

subplot(4,1,4);
hBar = bar(AUC, 'FaceColor', [.8 .8 .8]);

% Run a two-sample T-Test
[h,p,ci,stats] = ttest2(mean(zall(:,ts2(1,:) < -3 & ts2(1,:) >
-5)),mean(zall(:,ts2(1,:) > 0 & ts2(1,:) < 2)));

% Plot significance bar if p < .05
hold on;
centers = get(hBar, 'XData');
plot(centers(1:2), [1 1]*AUC(1,2)*1.1, '-k', 'LineWidth', 2)
p1 = plot(mean(centers(1:2)), AUC(1,2)*1.2, '*k');
set(gca,'xticklabel',{'Cue','Shock'});
title({'Cue vs Shock Response Changes', 'Area under curve'})
legend(p1, 'p < .05','Location','southeast');

set(gcf, 'Position',[100, 100, 500, 1000])

Example Workbooks | 69

Example Workbooks | 70

Licking Bout Epoc Filtering

This example looks at fiber photometry data in the VTA where subjects are provided sucrose

water after a fasting period.

Lick events are captured as TTL pulses.

Objective is to combine many consecutive licking events into a single event based on time

difference and lick count thresholds.

New lick bout events can then be used for clear peri-event filtering.

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

Call the import function from the MATLAB SDK.

close all; clear all; clc;

[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'VTA4-190125-100559');

data = TDTbin2mat(BLOCKPATH);

Example Workbooks | 71

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LickingBouts.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LickingBouts.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LickingBouts.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LickingBouts.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/LickingBouts.m
https://www.tdt.com/files/examples/TDTExampleData.zip
https://www.tdt.com/docs/sdk/offline-data-analysis/offline-data-matlab/

Declare data stream and epoc names we will use downstream These are the field names for

the relevant streams of the data struct

Basic plotting and artifact removal

Make a time array based on number of samples and sample freq of demodulated streams

Plot both unprocessed demodulated data streams

Found Synapse note file: C:
\TDT\TDTMatlabSDK\Examples\ExampleData\VTA4-190125-100559\Notes.txt
read from t=0.00s to t=785.44s

GCAMP = 'x480G';
ISOS = 'x405G';
LICK = 'Ler_';

% Make some pretty colors for later plotting
% <https://math.loyola.edu/~loberbro/matlab/html/colorsInMatlab.html>
red = [0.8500, 0.3250, 0.0980];
green = [0.4660, 0.6740, 0.1880];
cyan = [0.3010, 0.7450, 0.9330];
gray1 = [.7 .7 .7];
gray2 = [.8 .8 .8];

time = (1:length(data.streams.(GCAMP).data))/data.streams.(GCAMP).fs;

figure('Position',[100, 100, 800, 400])
hold on;
p1 = plot(time, data.streams.(GCAMP).data,'color',green,'LineWidth',2);
p2 = plot(time, data.streams.(ISOS).data,'color',red,'LineWidth',2);
title('Raw Demodulated Responses','fontsize',16);
ylabel('mV','fontsize',16);
axis tight;
legend([p1 p2], {'GCaMP','UV'});

Example Workbooks | 72

Artifact removal

There is often a large artifact on the onset of LEDs turning on Remove data below a set time t

Plot again at new time range

t = 8; % time threshold below which we will discard
ind = find(time>t,1); % find first index of when time crosses threshold
time = time(ind:end); % reformat vector to only include allowed time
data.streams.(GCAMP).data = data.streams.(GCAMP).data(ind:end);
data.streams.(ISOS).data = data.streams.(ISOS).data(ind:end);

clf;
hold on;
p1 = plot(time, data.streams.(GCAMP).data,'color',green,'LineWidth',2);
p2 = plot(time, data.streams.(ISOS).data,'color',red,'LineWidth',2);
title('Raw Demodulated Responses with Artifact Removed','fontsize',16);
xlabel('Seconds','fontsize',16)
ylabel('mV','fontsize',16);
axis tight;
legend([p1 p2], {'GCaMP','UV'});

Example Workbooks | 73

Downsample data doing local averaging

Average around every Nth point and downsample Nx

Decimate time array and match length to demodulated stream

Detrending and dFF

Full dFF according to Lerner et al. 2015 https://dx.doi.org/10.1016/j.cell.2015.07.014 dFF

using 405 fit as baseline

N = 10; % multiplicative for downsampling
data.streams.(GCAMP).data = arrayfun(@(i)...
 mean(data.streams.(GCAMP).data(i:i+N-1)),...
 1:N:length(data.streams.(GCAMP).data)-N+1);
data.streams.(ISOS).data = arrayfun(@(i)...
 mean(data.streams.(ISOS).data(i:i+N-1)),...
 1:N:length(data.streams.(ISOS).data)-N+1);

time = time(1:N:end);
time = time(1:length(data.streams.(GCAMP).data));

bls = polyfit(data.streams.(ISOS).data,data.streams.(GCAMP).data,1);
Y_fit_all = bls(1) .* data.streams.(ISOS).data + bls(2);
Y_dF_all = data.streams.(GCAMP).data - Y_fit_all; %dF (units mV) is not dFF

Example Workbooks | 74

https://dx.doi.org/10.1016/j.cell.2015.07.014

Turn Licking Events into Lick Bouts

Make a continuous time series of Licking TTL events (epocs) and plot

First subplot in a series: dFF with lick epocs

Now combine lick epocs that happen in close succession to make a single on/off event (a lick

BOUT). Top view logic: if difference between consecutive lick onsets is below a certain time

dFF = 100*(Y_dF_all)./Y_fit_all;
std_dFF = std(double(dFF));

LICK_on = data.epocs.(LICK).onset;
LICK_off = data.epocs.(LICK).offset;
LICK_x = reshape(kron([LICK_on, LICK_off], [1, 1])', [], 1);
sz = length(LICK_on);
d = data.epocs.(LICK).data';
y_scale = 10; %adjust according to data needs
y_shift = -20; %scale and shift are just for aesthetics
LICK_y = reshape([zeros(1, sz); d; d; zeros(1, sz)], 1, []);

figure('Position',[100, 100, 800, 400]);
p1 = plot(time, dFF, 'Color',green,'LineWidth',2); hold on;
p2 = plot(LICK_x, y_scale*(LICK_y) + y_shift,'color',cyan,'LineWidth',2);
title('Detrended, y-shifted dFF','fontsize',16);
legend([p1 p2],'GCaMP','Lick Epoc');
axis tight

Example Workbooks | 75

threshold and there was more than one lick in a row, then consider it as one bout, otherwise it

is its own bout. Also, make sure a minimum number of licks was reached to call it a bout.

Make a new epoc event in the data structure

Find differences in onsets and threshold for major difference indices

Make an onset/ offset array based on threshold indices

LICK_EVENT = 'Lick_Event';
data.epocs.(LICK_EVENT).name = LICK_EVENT;
data.epocs.(LICK_EVENT).onset = [];
data.epocs.(LICK_EVENT).offset = [];
data.epocs.(LICK_EVENT).typeStr = data.epocs.(LICK).typeStr;
data.epocs.(LICK_EVENT).data = [];

lick_on_diff = diff(data.epocs.(LICK).onset);
BOUT_TIME_THRESHOLD = 10; % example bout time threshold, in seconds
lick_diff_ind = find(lick_on_diff >= BOUT_TIME_THRESHOLD);

Example Workbooks | 76

Now determine if it was a 'real' bout or not by thresholding by some user-set number of licks in

a row

diff_ind_i = 1;
for i = 1:length(lick_diff_ind)
 % BOUT onset is thresholded onset index of lick epoc event
 data.epocs.(LICK_EVENT).onset(i) = data.epocs.(LICK).onset(diff_ind_i);

 % BOUT offset is thresholded offset of lick event before next onset
 data.epocs.(LICK_EVENT).offset(i) = ...
 data.epocs.(LICK).offset(lick_diff_ind(i));

 data.epocs.(LICK_EVENT).data(i) = 1; % set the data value, arbitrary 1
 diff_ind_i = lick_diff_ind(i) + 1; % increment the index
end

% Special case for last event to handle lick event offset indexing
data.epocs.(LICK_EVENT).onset = [data.epocs.(LICK_EVENT).onset, ...
 data.epocs.(LICK).onset(lick_diff_ind(end)+1)];
data.epocs.(LICK_EVENT).offset = [data.epocs.(LICK_EVENT).offset, ...
 data.epocs.(LICK).offset(end)];
data.epocs.(LICK_EVENT).data = [data.epocs.(LICK_EVENT).data, 1];

% Transpose the arrays to make them column vectors like other epocs
data.epocs.(LICK_EVENT).onset = data.epocs.(LICK_EVENT).onset';
data.epocs.(LICK_EVENT).offset = data.epocs.(LICK_EVENT).offset';
data.epocs.(LICK_EVENT).data = data.epocs.(LICK_EVENT).data';

% Note that for speed the previous section could be replaced with these three
lines
% data.epocs.(LICK_EVENT).onset = data.epocs.(LICK).onset([1;
lick_diff_ind+1]);
% data.epocs.(LICK_EVENT).offset = data.epocs.(LICK).offset([lick_diff_ind;
end]);
% data.epocs.(LICK_EVENT).data = ones(1, length(data.epocs.
(LICK_EVENT).onset))';

MIN_LICK_THRESH = 4; % four licks or more make a bout
licks_array = zeros(length(data.epocs.(LICK_EVENT).onset),1);
for i = 1:length(data.epocs.(LICK_EVENT).onset)
 % Find number of licks in licks_array between onset ond offset of
 % Our new lick BOUT (LICK_EVENT)
 licks_array(i) = numel(find(data.epocs.(LICK).onset >=...
 data.epocs.(LICK_EVENT).onset(i) & data.epocs.(LICK).onset <=...
 data.epocs.(LICK_EVENT).offset(i)));
end

Example Workbooks | 77

Remove onsets, offsets, and data of thrown out events. MATLAB can use booleans for

indexing. Cool!

Make continuous time series for lick BOUTS for plotting

Next step: dFF with newly defined lick bouts

Making nice area fills instead of epocs for aesthetics. Newer versions of MATLAB can use

alpha on area fills, which could be desirable

data.epocs.(LICK_EVENT).onset((licks_array < MIN_LICK_THRESH)) = [];
data.epocs.(LICK_EVENT).offset((licks_array < MIN_LICK_THRESH)) = [];
data.epocs.(LICK_EVENT).data((licks_array < MIN_LICK_THRESH)) = [];

LICK_EVENT_on = data.epocs.(LICK_EVENT).onset;
LICK_EVENT_off = data.epocs.(LICK_EVENT).offset;
LICK_EVENT_x = reshape(kron([LICK_EVENT_on,LICK_EVENT_off],[1, 1])',[],1);
sz = length(LICK_EVENT_on);
d = data.epocs.(LICK_EVENT).data';
LICK_EVENT_y = reshape([zeros(1, sz); d; d; zeros(1, sz)], 1, []);

clf;
p1 = plot(time, dFF,'Color',green,'LineWidth',2);
hold on;
p2 = plot(LICK_EVENT_x, y_scale*(LICK_EVENT_y) + y_shift,...
 'color',cyan,'LineWidth',2);
title('Detrended, y-shifted dFF','fontsize',16);
legend([p1 p2],'GCaMP', 'Lick Bout');
axis tight

Example Workbooks | 78

Time Filter Around Lick Bout Epocs

Note that we are using dFF of the full time-series, not peri-event dFF where f0 is taken from a

pre-event baseline period. That is done in another fiber photometry data analysis example.

Pre-allocate memory

clf;
hold on;
dFF_min = min(dFF);
dFF_max = max(dFF);
for i = 1:numel(data.epocs.(LICK_EVENT).onset)
 h1(i) = area([data.epocs.(LICK_EVENT).onset(i) ...
 data.epocs.(LICK_EVENT).offset(i)], [dFF_max dFF_max], ...
 dFF_min, 'FaceColor',cyan,'edgecolor', 'none');
end
p1 = plot(time, dFF,'Color',green,'LineWidth',2);
title('Detrended, y-shifted dFF','fontsize',16);
legend([p1 h1(1)],'GCaMP', 'Lick Bout');
ylabel('\DeltaF/F','fontsize',16)
xlabel('Seconds','fontsize',16);
axis tight

PRE_TIME = 5; % ten seconds before event onset
POST_TIME = 10; % ten seconds after
fs = data.streams.(GCAMP).fs/N; % recall we downsampled by N = 100 earlier
% time span for peri-event filtering, PRE and POST
TRANGE = [-1*PRE_TIME*floor(fs),POST_TIME*floor(fs)];

Example Workbooks | 79

Make stream snips based on trigger onset

Make all snippet cells the same size based on minimum snippet length

trials = numel(data.epocs.(LICK_EVENT).onset);
dFF_snips = cell(trials,1);
array_ind = zeros(trials,1);
pre_stim = zeros(trials,1);
post_stim = zeros(trials,1);

for i = 1:trials
 % If the bout cannot include pre-time seconds before event, make zero
 if data.epocs.(LICK_EVENT).onset(i) < PRE_TIME
 dFF_snips{i} = single(zeros(1,(TRANGE(2)-TRANGE(1))));
 continue
 else
 % Find first time index after bout onset
 array_ind(i) = find(time > data.epocs.(LICK_EVENT).onset(i),1);

 % Find index corresponding to pre and post stim durations
 pre_stim(i) = array_ind(i) + TRANGE(1);
 post_stim(i) = array_ind(i) + TRANGE(2);
 dFF_snips{i} = dFF(pre_stim(i):post_stim(i));
 end
end

minLength = min(cellfun('prodofsize', dFF_snips));
dFF_snips = cellfun(@(x) x(1:minLength), dFF_snips, 'UniformOutput',false);

% Convert to a matrix and get mean
allSignals = cell2mat(dFF_snips);
mean_allSignals = mean(allSignals);
std_allSignals = std(mean_allSignals);

% Make a time vector snippet for peri-events
peri_time = (1:length(mean_allSignals))/fs - PRE_TIME;

Example Workbooks | 80

Make a Peri-Event Stimulus Plot and Heat Map

% Make a standard deviation fill for mean signal
figure('Position',[100, 100, 600, 750])
subplot(2,1,1)
xx = [peri_time, fliplr(peri_time)];
yy = [mean_allSignals + std_allSignals,...
 fliplr(mean_allSignals - std_allSignals)];
h = fill(xx, yy, 'g'); % plot this first for overlay purposes
hold on;
set(h, 'facealpha', 0.25, 'edgecolor', 'none');

% Set specs for min and max value of event line.
% Min and max of either std or one of the signal snip traces
linemin = min(min(min(allSignals)),min(yy));
linemax = max(max(max(allSignals)),max(yy));

% Plot the line next
l1 = line([0 0], [linemin, linemax],...
 'color','cyan', 'LineStyle', '-', 'LineWidth', 2);
% Plot the signals and the mean signal
p1 = plot(peri_time, allSignals', 'color', gray1);
p2 = plot(peri_time, mean_allSignals, 'color', green, 'LineWidth', 3);
hold off;

% Make a legend and do other plot things
legend([l1, p1(1), p2, h],...
 {'Lick Onset','Trial Traces','Mean Response','Std'},...
 'Location','northeast');
title('Peri-Event Trial Responses','fontsize',16);
ylabel('\DeltaF/F','fontsize',16);
axis tight;
% Make an invisible colorbar so this plot aligns with one below it
temp_cb = colorbar('Visible', 'off');

% Heat map
subplot(2,1,2)
imagesc(peri_time, 1, allSignals); % this is the heatmap
set(gca,'YDir','normal') % put the trial numbers in better order on y-axis
colormap(gray()) % colormap otherwise defaults to perula
title('Lick Bout Heat Map','fontsize',16)
ylabel('Trial Number','fontsize',16)
xlabel('Seconds from lick onset','fontsize',16)
cb = colorbar;
ylabel(cb, 'dFF','fontsize',16)
axis tight;

Example Workbooks | 81

Example Workbooks | 82

Export Continuous Data To Binary File

Import continuous data into MATLAB using TDTbin2mat

Export the data to a binary file (f32 floating point or 16-bit integer)

Channels are interlaced in the final output file

Good for exporting to other data analysis applications

 Download M File

Housekeeping

Clear workspace and close existing figures. Add SDK directories to MATLAB path.

Importing the Data

This example assumes you downloaded our example data sets and extracted it into the

\TDTMatlabSDK\Examples directory. To import your own data, replace 'BLOCKPATH' with the

path to your own data block.

In Synapse, you can find the block path in the database. Go to Menu → History. Find your

block, then Right-Click → Copy path to clipboard.

close all; clear all; clc;
[MAINEXAMPLEPATH,name,ext] = fileparts(cd); % \TDTMatlabSDK\Examples
DATAPATH = fullfile(MAINEXAMPLEPATH, 'ExampleData'); %
\TDTMatlabSDK\Examples\ExampleData
[SDKPATH,name,ext] = fileparts(MAINEXAMPLEPATH); % \TDTMatlabSDK
addpath(genpath(SDKPATH));

BLOCKPATH = fullfile(DATAPATH,'Algernon-180308-130351');

Example Workbooks | 83

https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamToBinary.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamToBinary.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamToBinary.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamToBinary.m
https://www.tdt.com/docs/sdk/offline-data-analysis/assets/m_files/StreamToBinary.m
https://www.tdt.com/files/examples/TDTExampleData.zip

Setup the variables for the data you want to extract

We will extract the stream stores and output them to 16-bit integer files

read the first second of data to get the channel count

If you want an individual store, use the 'STORE' filter like this:

data = TDTbin2mat(BLOCKPATH, 'TYPE', {'streams'}, 'STORE', 'Wav1', 'T2', 1);

Loop through all the streams and save them to disk in 10 second chunks

FORMAT = 'i16'; % i16 = 16-bit integer, f32 = 32-bit floating point
SCALE_FACTOR = 1e6; % scale factor for 16-bit integer conversion, so units
are uV
% Note: The recommended scale factor for f32 is 1

data = TDTbin2mat(BLOCKPATH, 'TYPE', {'streams'}, 'T2', 1);

read from t=0.00s to t=1.00s

Example Workbooks | 84

fff = fields(data.streams);
TIME_DELTA = 10;
for ii = 1:numel(fff)
 T1 = 0;
 T2 = T1 + TIME_DELTA;

 thisStore = fff{ii};
 OUTFILE = fullfile(BLOCKPATH, [thisStore '.' FORMAT]);

 fid = fopen(OUTFILE, 'wb');

 data = TDTbin2mat(BLOCKPATH, 'STORE', fff{ii}, 'T1', T1, 'T2', T2);

 % loop through data in 10 second increments
 while ~isempty(data.streams.(thisStore).data)
 if strcmpi(FORMAT, 'i16')
 fwrite(fid, SCALE_FACTOR*reshape(data.streams.(thisStore).data, 1,
[]), 'integer*2');
 elseif strcmpi(FORMAT, 'f32')
 fwrite(fid, SCALE_FACTOR*reshape(data.streams.(thisStore).data, 1,
[]), 'single');
 else
 warning('Format %s not recognized. Use i16 or f32', FORMAT);
 break
 end
 T1 = T2;
 T2 = T2 + TIME_DELTA;
 data = TDTbin2mat(BLOCKPATH, 'STORE', fff{ii}, 'T1', T1, 'T2', T2);
 end
 fprintf('Wrote %s to output file %s\n', thisStore, OUTFILE);
 fprintf('Sampling Rate: %.6f Hz\n', data.streams.(thisStore).fs);
 fprintf('Num Channels: %d\n', size(data.streams.(thisStore).data, 1));
 fclose(fid);
end

Example Workbooks | 85

read from t=0.00s to t=10.00s
read from t=10.00s to t=20.00s
read from t=20.00s to t=30.00s
read from t=30.00s to t=40.00s
read from t=40.00s to t=50.00s
read from t=50.00s to t=60.00s
read from t=60.00s to t=70.00s
read from t=70.00s to t=80.00s
Wrote pNe1 to output file C:
\TDT\TDTMatlabSDK\Examples\ExampleData\Algernon-180308-130351\pNe1.i16
Sampling Rate: 498.246185 Hz
Num Channels: 16
read from t=0.00s to t=10.00s
read from t=10.00s to t=20.00s
read from t=20.00s to t=30.00s
read from t=30.00s to t=40.00s
read from t=40.00s to t=50.00s
read from t=50.00s to t=60.00s
read from t=60.00s to t=70.00s
read from t=70.00s to t=80.00s
Wrote Wav1 to output file C:
\TDT\TDTMatlabSDK\Examples\ExampleData\Algernon-180308-130351\Wav1.i16
Sampling Rate: 24414.062500 Hz
Num Channels: 16
read from t=0.00s to t=10.00s
read from t=10.00s to t=20.00s
read from t=20.00s to t=30.00s
read from t=30.00s to t=40.00s
read from t=40.00s to t=50.00s
read from t=50.00s to t=60.00s
read from t=60.00s to t=70.00s
read from t=70.00s to t=80.00s
Wrote LFP1 to output file C:
\TDT\TDTMatlabSDK\Examples\ExampleData\Algernon-180308-130351\LFP1.i16
Sampling Rate: 3051.757813 Hz
Num Channels: 16

Example Workbooks | 86

Conversion of Continuous Data into Binary Format

This guide is designed to provide TDT data users various options for converting their data into

binary format, CSV, EDF, DDT, and other formats for import into third-party applications such as

Spike2, Kilosort, Plexon Offline Sorter, or others. Please look through the options to see which

one is best suited for your needs.

Scaling Notes

Different applications may have different scaling requirements. Please always check your

scaling across multiple applications to ensure you are scaling your data properly.

Please compare the TDT block or SEV data in MATLAB or Python or OpenScope (https://

www.tdt.com/docs/lightning/openscope/ and https://www.tdt.com/docs/openscope/) vs your

end-use application (POS, Spike2, or anything else) to make sure the scaling is correct.

TDT streaming data is almost always stored as 32-bit floating point values in units of Volts.

Check the StoresListing.txt file inside the block folder for a full listing of the streaming

data stores. The information includes: Gizmo name, store name, data format, scale factor, and

sampling rate. Here is an example:

When exporting as int16 , generally you will use a scale factor of 1e6 . This converts the units

to microVolt.

One common example of necessary scaling is when exporting to Plexon Offline Sorter. You

may need to adjust the scale in Plexon under the Preamp/Total gain to have a gain of 153, as

Object ID : Wave1 - Stream Data Storage
 Store ID : Wav1
 Format : Float-32
 Scale : Unity
 Rate : 24414.1 Hz

Note that the sampling rate shown in this file is rounded. The exporting tool will export the exact sampling rate.

For TDTexport, this is a text file that is created next to the binary files.

Note

Conversion of Continuous Data into Binary Format | 87

https://www.tdt.com/docs/lightning/openscope/
https://www.tdt.com/docs/lightning/openscope/
https://www.tdt.com/docs/openscope/

shown in the image in the Using OpenBrowser or OpenBridge section. This is because Plexon

imports DDT files as 16-bit files with an assumed max resolution of 5 V, which makes the

resolution 0.153 uV/bit, but you will probably want to adjust that resolution to be 1 uV / bit.

However, import your data without this change first to see if the scaling is off, then adjust

accordingly and check again.

Using TDTexport

TDTexport is a command-line tool for exporting continuous data to binary or CSV files. Here is

a link to the file you will need: https://www.tdt.com/files/tech/TDTexport.exe (download will

begin automatically). Copy this file into C:\TDT\ and use it from the Windows Command line

like this:

In this example, channels 1, 3, 5 of the Wav1 and Wav2 stores from block C:

\TDT\OpenEx\Tanks\DEMOTANK2\Block-2 are scaled by 1e6 and converted to interlaced i16

files. The files will be named C:\TDT\OpenEx\Tanks\DEMOTANK2\Block-2\Wav1.16 and C:

\TDT\OpenEx\Tanks\DEMOTANK2\Block-2\Wav2.i16 .

This method will export the data as an interlaced binary file (although you can specify

interlaced or individual channels), which applications like Kilosort, Spike2, and Plexon Offline

Sorter can directly read. You may need to change the file extension from .i16 to .bin for

Kilosort.

It also exports a summary text file that includes the options used for the export and the exact

sampling rate of the data stores. Here is an example.

Here is the full list of options:

> C:\TDT\TDTexport.exe C:\TDT\OpenEx\Tanks\DEMOTANK2\Block-2 --scale 1e6 --
dtype i16 --channels 1 3 5 --stores Wav1 Wav2

Path: G:\TEMP\Block-81\
ScaleFactor: 1.0
Stores:
 Name: SU_4
 Freq: 24414.0625
 NChan: 16

Conversion of Continuous Data into Binary Format | 88

https://www.tdt.com/files/tech/TDTexport.exe

Using OpenBrowser or OpenBridge (EDF, DDT, PLX)

Use OpenBrowser for conversion of files into EDF format for import into EDF readers such as

Polyman, Sleepsign, and others. You can export single or multiple channels into a single EDF

output file.

You can follow along with this Lightning Video and read the Open Browser User Guide.

Both OpenBrowser and OpenBridge can convert continuous data into DDT file format, which

can be read by Plexon Offline Sorter using the Import and Continuous Binary option (newer

versions of POS do not read DDT files directly. It might be simpler to use TDTexport instead, so

try both methods if you are unsure.

Here is a link to the OpenBrowser manual exporting section and here is the OpenBridge

manual.

Avoid pressing 'Refresh' in OpenBrowser like the video shows if your data is very long. This could slow down or

crash OpenBrowser.

Note

Conversion of Continuous Data into Binary Format | 89

https://www.tdt.com/docs/lightning/openbrowser/
https://www.tdt.com/files/manuals/OpenEx_User_Guide.pdf#page=277
https://www.tdt.com/files/manuals/OpenEx_User_Supplement_Syn.pdf#page=72
https://www.tdt.com/docs/sdk/offline-data-analysis/openbridge/
https://www.tdt.com/docs/sdk/offline-data-analysis/openbridge/

DDT files have a data offset of 412 samples, so be sure to use the correct offset when

importing.

See the Scaling Notes section for important scaling information.

Conversion of Continuous Data into Binary Format | 90

Using the Python SDK

You can use the python SDK to import block data, SEV files, or subsets of streams or channels

using the read_block function, which is a part of the tdt module. The read_block function

also has an export option that you can call. TDTexport is essentially a command line wrapper

around this function.

For example:

This is going to export all the data in streams, so if you want to only export a certain subset be

sure to only import that subset to begin with. Use print(read_block.__doc__) to see the

other options that allow you to select specific stores, time filters, etc, and other export options,

like 'binary' and 'csv'.

Using the MATLAB SDK

This binary export script example can be used to export as i16 of f32. Be sure to pick the

appropriate scaling for whichever format you select.

For Kilosort, use a scaling factor of 1e6 and export to i16. Then, change the file names from

.i16 to .bin and they should work in Kilosort. If you have SEV files, TDTbin2mat will call

SEV2mat, so it should work on just the relevant streams if you give it the right Stream Store

name. If you use SEV2mat directly, then you may need to move the structure that gets

imported into a data.streams.(StoreName) structure first.

from tdt import read_block

>>> data = read_block('D:\\Tanks\\Scale-210527-121349\
\Subject1-210527-121350', export='interlaced', outdir='D:\\Tanks\
\Scale-210527-121349\\Subject1-210527-121350', prefix='test')
read from t=0s to t=16.71s
exporting TEV stream Wav1...
...100%, 0 seconds elapsed
exporting TEV stream Wav2...
...100%, 0 seconds elapsed

Conversion of Continuous Data into Binary Format | 91

Video Review and Scoring

This document is meant to provide TDT users with steps for reviewing their data-synchronized

videos using OpenScope, third-party media players, or replaying it using a demo MATLAB

Script. There is also information for scoring the videos using OpenScope.

The most common synchronized video file that TDT users will have is using a USB Camera but

this applies to RV2 video tracker as well.

Notes for Third-Party Video Recording

If you are recording video with a third party software (a common example is EthoVision/

Noldus camera or a camera with GPIO to talk to TDT hardware), then you will want to make

sure that you have a way to synchronize your video with your TDT data.

You will not be able to review the video side-by-side your data using OpenScope in this case,

but you will still be able to align your video with TDT data if you have a TTL event that

timestamps when frames were captured or requested. This most often will be either your Third

Party camera sending a TTL pulse to your TDT processor when a frame has been captures

(you will save the TTL input in Synapse), or you will send a TTL pulse from Synapse to request

a frame to be captured from your external camera.

Best practice would be to start your TDT recording first, then your video, if you are sending TTL

pulses externally to TDT, or start your video software first then run TDT if you are sending

frame capture requests from TDT to your external camera. These timestamps will then allow

you to align the camera frames to your TDT data in post-processing.

Video Review and Scoring | 92

https://www.tdt.com/docs/synapse/hardware/video-processors/#usb-camera
https://www.tdt.com/docs/synapse/hardware/video-processors/#rv2-video-tracker
https://www.tdt.com/docs/lightning/synapse/#digital-io-bit-input
https://www.tdt.com/docs/lightning/synapse/#pulse-gen-with-ttl-output

View Video Synchronized with Other Data

You can review data alongside video files using OpenScope. Here are several Lightning Videos

that demonstrate opening OpenScope:

From within Synapse

Opening OpenScope directly

Observing videos associated with your recordings

Please note that if you are using OpenScope on a machine other than your Synapse computer,

or you have relocated your data, then you may need to add in .ini files for Scope to recognize

your tanks and block (only needed if Scope is not seeing your data).

How To Score Videos or Timestamp Data Based on Behavior In
Video

To add epoc scoring to your videos: See Video Review and Epoch Annotation in the OpenScope

manual.

In brief, first you must open the data in OpenScope and then open the associated video. Then

open the 'Notes Window'. Once you begin animating the data, if you put the Notes Window into

'Record Mode' then it will begin to track epoc events in the Cam1 epocs (this is the red arrow).

With this set up, you can add your notes by manually setting them or using the rapid annotation

with the keypad.

Once the notes have been attached to an epoc event (this is the little number next to the epoc

mark), they will be put into the data block itself in association with the Cam1 epoc event. Thus,

when you import the data into MATLAB using TDTbin2mat and look at the data.epocs.Cam1

event, you will see that there is a Cam1.notes field as well. These are your scored events.

Below are notes and images that show you how to use the Epoc Annotation/ Notes feature in

Open Scope. This allows you to mark your data ("score" your video) to add timestamps to your

block where events of interest occur. This can be very helpful for post processing and analysis.

Video Review and Scoring | 93

https://www.tdt.com/docs/lightning/openscope/#view-data-in-openscope
https://www.tdt.com/docs/lightning/openscope/#using-openscope
https://www.tdt.com/docs/lightning/openscope/#openscope-video-viewer
https://www.tdt.com/docs/technotes/tn/TN0907/
https://www.tdt.com/docs/technotes/tn/TN0907/
https://www.tdt.com/docs/openscope/video-review/
https://www.tdt.com/docs/openscope/epoc-annotation/

OpenScope Video Frames - video frame timestamp matches epoc 73

OpenScope Single Frames - zoom on the timelines

If you zoom in far enough you will see individual epoc events, which you can click and move

frame by frame. Arrow keys still jump by one span of the x-axis (minimum 0.5 seconds).

Select View > Notes Window to open the annotation window. From there, add the list of

possible notes. Click 'Record Mode' to enable keyboard scoring. Whenever a number key is

pressed, the note associated with that number will be attached to the nearest Cam1 epoc

event.

Video Review and Scoring | 94

OpenScope Notes Window

A red arrow marks the currently tracked Cam1 epoc. If you have multiple epoc events, you can

change which event gets the notes by right-clicking on the name of it.

OpenScope Notes Attached to Epoc Event

Use arrow keys (turn off "Animate") to move left and right through stream. Note that this will

jump by the time span of the x-axis (minimum 0.5 seconds). For finer resolution, you will need

to expand the time viewer window and click on individual camera timestamps.

Use Hot Keyboard numbers '1', '2', etc per the Note Index to add a Note to currently tracked

epoc (red flag, epoc 73, Note Index 1 in this case).

OpenScope Setting Notes

Video Review and Scoring | 95

Or right click near Cam1 epoc you want to mark and pick 'Note', then set note accordingly, Epoc

70, Note 2 in this case.

Manually Setting Note

Individual or all notes can be removed. The remaining notes get written to the data block, and

can be used for analysis, such as generating peri-event plots.

Note Data Imported Into MATLAB

Video Review and Scoring | 96

View Data in Another Video Viewer

VLC Media Player is a wonderful open source media player. There are others, too, that users

might want to use to review the video files. The main issue with all of these is that the video

players might assume a wrong and static frame rate for the video and the recorded AVI files

will not have the same length as the recordings. The most common outcome of this is that the

video ends up being ¾ the length of the recorded data upon view.

OpenScope uses the actual Cam1 timestamps to mark when the frame was pulled from the

camera. Often, the real camera rate will be 15 fps but a video player will assume 20 fps when

reading the data, which is how you get a '45 min' video from a real 1-hour video. If you wanted

to read the video in MATLAB or Python to plot alongside your data, then you can use the Cam1

epocs to know the exact time and frame number that corresponds to your data time.

VLC media player can, however, read .sub files that correlate to the real recording time and

overlay it on the video. If you want VLC media player to display the timestamp of the video

while it is playing, then you can open the AVI file in OpenScope using the video viewer first.

This will create a .sub file (in the data block folder) which you can then use in VLC media player

to display the timestamps of each frame as it is playing.

Below is MATLAB code that will also generate a sub file. Replace 'block' with your block name,

and it will make a file called 'output.sub' in that folder:

 block = 'F:\TESTAVI';
 outfile = [block filesep 'output.sub'];
 data = TDTbin2mat(block, 'STORE', 'Cam1');
 s = cell(1, length(data.epocs.Cam1.onset));

 for i = 1:length(data.epocs.Cam1.onset)
 t = data.epocs.Cam1.onset(i);
 d = data.epocs.Cam1.data(i);
 s{i} = sprintf('{%d}{%d}%.6f\n', d-1, d, t);
 end

 fid = fopen(outfile, 'w')
 fwrite(fid, cell2mat(s));
 fclose(fid)

Video Review and Scoring | 97

https://www.tdt.com/docs/technotes/tn/TN0981/

Plot My Data Alongside Video

Your TDT data will contain timestamps for video frames as well as the continuous data. You

can import data into MATLAB or Python and playback, review, and score your video in that

environment.

TDT has an example for overlaying time-locked video with a photometry trace using MATLAB.

The script and example data can be found in the MATLAB SDK.

When importing TDT data and video files into MATLAB or Python, you may notice that the number of camera epoc

events does not match the number of video frames.

What you are seeing is normal and is explained in this Tech Note. You can just use the number of frames that

matches the length of your Cam1.onset array, starting from index 0 and just chop off the extra video frames at the

end.

Note

Video Review and Scoring | 98

https://www.tdt.com/docs/technotes/tn/TN0987/
https://twitter.com/markhanus/status/1460642871686701056

OpenBridge User Guide

Overview

OpenBridge serves as both a general export utility and a "bridge" between an TTank data tank

and Plexon's Offline Sorter. OpenBridge exports to NEX v100, DDT v103, EDF+ EDF and PLX

v103 file formats. OpenBridge runs on Windows® 10 operating system.

The bridge functionality is available for Plexon's Offline Sorter. It allows for a smooth export

and return of sorted data back into the data tank.

Although EDF+ supports exporting snippets, the OpenBridge EDF+ export function does not

support exporting snippets. It does support exporting stream data in the EDF+ format.

OpenBridge features:

Allows user selection of events, sorts, and channels for export

Manages high channel count data sets as multiple files to accommodate Offline Sorter

file limitations.

Automatically launches Offline Sorter on export of PLX or DDT formats.

Preserves channel numbering across applications.

Automatically detects changes to PLX files.

Automatically imports new sorts into the tank.

Cleans up files after all sorts have been merged into the tank.

See Using the Bridge with Offline Sorter for more information on PLX export and importing sort

codes back into the data tank.

•

•

•

•

•

•

•

OpenBridge User Guide | 99

Workspace Basics

About the OpenBridge Workspace

OpenBridge provides a versatile workspace where users manage the export process The

customizable workspace includes collapsible panels that can be docked or floated and

provides auto hide push pin tools. Context sensitive menus, when available, can be accessed

by right-clicking the related area.

Menus and Toolbars

Menus and toolbars provide access to all commands and tools. Frequently-used commands

are available via toolbar buttons. Hover over a toolbar button to display a description of its

function in the Status Bar. See The Toolbar and Menus for a complete list of commands and

tools.

Tank Navigator Panel

A collapsible panel for selecting the tank and block. Registered data tanks are displayed for

quick selection.

OpenBridge User Guide | 100

Selector Panel

This panel is used for selecting export format and data. It shows all available epoch, snippet

and stream events for the selected block with check boxes for quick selection of events and

channels. Only event types that are allowed for the current export format are available.

Activity Log

Activity records are displayed, including export/import status and names of exported files.

Selecting a Data Set in the Tank Navigator Panel

The tank structure is hierarchical; each tank might include multiple blocks, each block might

contain several events and each event might include several channels. OpenBridge exports

data as channels. Before the channels can be selected for export, the tank, block, and event(s)

must be selected.

The Tank Navigator panel displays tanks and blocks to allow the user to select the desired data

set. It can be docked or floated depending on the user's needs.

If a panel is not in view, right-click the menu bar area then select the desired panel on the shortcut menu.

Note

OpenBridge User Guide | 101

Selecting a Tank

Users can select a tank in the TANK list area of the Tank Navigator. By default, only registered

tanks are displayed. More options, including registering or unregistering tanks, are available

from the TANK list shortcut menu.

Click the Open Existing Tank icon to open the Browse for Tank dialog and navigate to

the desired tank.

To register or unregister a tank, right-click the desired tank in the TANK list and select the

appropriate option from the shortcut menu.

Selecting a Block

All blocks in the currently selected tank are shown in the BLOCK list area of the Tank Navigator.

Choose one of the blocks for export. This will update the available events in the Selector Panel.

The shortcut menu in the BLOCK list controls what information is displayed, making it easier to

locate the desired block when the selected Tank contains many blocks.

To display the shortcut menu, right-click the BLOCK list:

When a block is selected, available Epoch Events, Snippet Events and Stream Events

(depending on what export format is selected) are enabled in the Selector Panel.

Unregistering a tank does not delete the tank files, however, only registered tanks will be listed in the TANK list at

startup.

Note

Option Description

Refresh Refresh the BLOCK list

Details Toggle details view on and off. This shows the block recording date, start time, stop time and

duration of each block

Sort Sort the block list by name instead of start time

Information Display the Block Notes window, which contains information on all events contained within the

selected block

OpenBridge User Guide | 102

Setting the Export Preferences

Click Preferences in the menu bar. The settings in the Preferences dialog are arranged on tabs,

a General tab for options common to more than one export format and individual tabs specific

to each export format.

General Tab

Option Description

Working files location Set the location where files will be stored during Bridge export/import

operations

Round sampling frequency to an integer Some formats use integer sampling rates by default (e.g. PLX) and

others allow floating point sampling rates (e.g. DDT). Check this box to

force all export files to use an integer sampling rate. This is useful if you

need to align two different data formats later on in your data processing.

Auto-run Offline Sorter (PLX/DDT) Select to launch exported PLX or DDT file in Offline Sorter immediately

after export has completed

Path Set the path to the Offline Sorter application. This path will vary

depending on the operating system and the version of Offline Sorter.

Stream Event Sampling Rate Select to use the default or specify a sampling rate in the text field

OpenBridge User Guide | 103

NEX, DDT, EDF Tabs

PLX Tab

Export and import options for the PLX data format. See Using the Bridge with Offline Sorter for

more information.

Selecting the Export Format

OpenBridge exports to NEX v100, PLX v103, DDT v103 and EDF+ EDF file formats. The scaling

multiplier and other settings for each format are set in the Preferences dialog (see above). Use

the Export Format drop-down list in the Selector Panel to choose the desired file type.

Selecting Events

The selections in the Selector Panel are used to specify data for export. Only event types in the

currently selected block that are supported by the selected export format are available. Plus

signs to the left of each event type are used to expand events lists. When the selections are

not available they appear light gray. The supported event types for each format are as follows:

Use the event tree in the Selector Panel to choose the stores and channels to export.

Option Description

Data Scaling Multiplier This scalar is applied during export. A typical value of 1000000 is used when converting

floating point uV signals into integer formats.

See Selecting Events below for information on the data types supported by each export format.

Note

File Type Supported Event Types

NEX Epoch, Snippet, Stream

PLX Epoch, Snippet

DDT Stream

EDF Stream

OpenBridge User Guide | 104

Exporting Data in NEX, DDT, and EDF Formats

Before exporting, set export format and preferences and select data as described above.

Ensure that the desired events, sorts and channel numbers are chosen in the Selector Panel.

Click the Export selected channels button on the toolbar, or click "Export Channels" in the

File I/O menu.

The exported file name format is:

TankName_BlockName_SnippetEventName_StreamEventName_Number.fmt

where fmt is the format type and Number increments on each subsequent export.

Exporting Data using Batch Processing

Batch processing eliminates the need to configure or apply the export to each block, however,

it takes additional processing time. You will need to allow for this extra time in your workflow.

Batching works by applying an export configuration file (*.obconf) to the blocks in a tank. To

create the configuration file:

Ensure that the desired export format and events, sorts and channel numbers are chosen in

the Selector Panel

Go the Menu > Configurations and click 'Export'

Specify location and file name, then save.

To run a batch export over many blocks in the same tank, modify a command line string as

follows:

Where:

C:\TDT\OpenEx\Bridge\OpenBridge.exe is the path to the OpenBridge application

C:\TDT\OpenEx\Tanks\DEMOTANK2 is the tank path

C:\TDT\test.obconf is the configuration file path

1.

2.

3.

C:\TDT\OpenEx\Bridge\OpenBridge.exe -tank C:\TDT\OpenEx\Tanks\DEMOTANK2 -
configuration C:\TDT\test.obconf -blocks -logPath C:\TDT\BridgeFiles

OpenBridge User Guide | 105

C:\TDT\BridgeFiles is the destination path

OpenBridge will use the configuration from the .obconf file to export all blocks in the tank. If

you want to export a subset of the blocks in the tank, add the "-blocks" switch with a comma

separated list of blocks. For example, add –blocks "Block-1,Block-2,Block-4" to the

command to export these three blocks only.

Type or paste the command string into the command line or into the search box on the Start

menu to launch. The OpenBridge window will open, perform the export, and then close.

Using the Bridge with Offline Sorter

The OpenBridge exports data to PLX format and can automate and simplify much of the

export/import process. It can launch Offline Sorter, manage channel numbering and file

handling, and then import data back into the TDT data tank. Work through the steps in this

section to make full use of the automated PLX format features in OpenBridge.

When exporting to PLX file format, snippet and epoch data is exported from the tank and

analyzed in Offline Sorter to create new sort codes. After the new PLX file is saved in Offline

Sorter, OpenBridge can automatically detect when new sort code information is available and

reintegrate this new sort code information back into the tank using a new sort name or Sort ID.

Once the process is complete, data can be viewed or used for further analysis in OpenSorter,

MATLAB or OpenExplorer.

The diagram below illustrates the basic OpenBridge workflow. User preferences control and

configure all automated processes.

The OpenBridge PLX Workflow

OpenBridge User Guide | 106

Setting PLX Export Preferences

The PLX export settings are accessed using the PLX tab of the Preferences dialog.

To open the PLX Preferences dialog:

Click Preferences on the menu bar.

Click the PLX tab.

1.

2.

OpenBridge User Guide | 107

Once all preferences have been set, ensure PLX is selected in the Export Format drop-down

list.

Exporting Channels

Before exporting, set preferences and select data as described above. Ensure that the desired

events, sorts and channel numbers are chosen in the Selector Panel

Click the Export selected channels button on the toolbar, or click "Export Channels" in the

File I/O menu.

If the Auto-run Offline Sorter (PLX / DDT) option is selected in the OpenBridge Preferences,

Offline Sorter will be launched and the exported data set will be loaded automatically.

Otherwise, manually launch Offline Sorter and load the PLX file.

Export Options Description

Channels per chunk Set the number of channels to include in each PLX file during export of high

channel count data sets. If exported channel count is higher than this number,

multiple files will be exported, each with up to this many channels in it.

Remap channels Select to renumber channels in sequential order when exporting a subset of

channels. Clear to maintain original channel numbering.

Export outliers as unsorted Select to mark outliers (sort code 31 in a TTank data tank) as "Invalid" when

exported to PLX. This allows Offline Sorter to properly recognize these events as

outliers.

Data Scaling Multiplier Enter the desired scaling multiplier to be applied on export. This is typically set

to 1000000 to convert floating point uV signals into integer format.

Import Options

Automatically import sorts Select to allow auto-import of sorts when changes to PLX files in the working

files folder are detected.

Confirm before importing Select to prompt for import when changes to PLX files in the working files folder

are detected.

Delete working files after import Select to allow PLX files in the defined working files folder to be automatically

deleted after new sort data are imported. This includes the PLX file with the new

sort information.

Prompt for sort name Select to prompt for sort name when sorts are imported.

Use fixed sort name Select and define a sort name to be used automatically when sorts are imported.

OpenBridge User Guide | 108

The PLX file is stored in the working folder (set in the Preference dialog) and named using the

following convention TankName_BlockName_SnippetEventName__Number.plx where Number is

incremented on each subsequent export.

Exporting Tetrode Recordings

The Tetrode Sorting gizmo in Synapse concatenates the four snippets of a tetrode into one

long snippet and saves that to a single channel in the data tank. When exporting to PLX,

Plexon's Offline Sorter expects the data from each tetrode to be in four unique channels.

OpenBridge automatically detects tetrode data in the OpenEx data tank and splits each tetrode

snippet into individual channels on export. However, sort codes identified in Offline Sorter can

not be transferred back into the TDT data tank at this time.

Importing Channels

After you have completed sorting and analysis in Offline Sorter, save the file to the OpenBridge

Working directory.

Depending on selections in the Preferences dialog, OpenBridge may:

Auto-detect the new sort data

Automatically import new sort data

Prompt for confirmation before importing

Prompt for a sort name before importing

The Offline Sorter Hardware key must be connected to enable all features. If a warning message is displayed,

insert the key before continuing. You will need to close and re-open Offline Sorter.

Note

•

•

•

•

OpenBridge User Guide | 109

If OpenBridge is not set to auto-detect new sort information, you can import the

information manually by clicking the Import Sorted Files button, to launch the Import

Sorting from PLX dialog.

In this dialog you can choose to import sort information from a single file or all files in the

working directory. You can also choose whether or not to delete source file(s) after import.

Click the desired radio button and browse for the new file.

Click OK.

If you are prompted to enter a sort name, type the new name and click OK.

1.

2.

3.

OpenBridge User Guide | 110

The Toolbar and Menus

The OpenBridge Toolbar

The Standard Toolbar provides access to the most common OpenBridge commands.

OpenBridge Configuration Menu

 Export Selected Channels
Export selected channels to the working files location in the selected export

format

 Export Selected Channels

in Chunks

Export selected channels in chunks to the working files location.

This is only available when exporting to PLX format.

Each chunk of channels is exported into a separate file.

The number of channels in each chunk is set in the Preferences dialog PLX tab.

 Import Sorted Files
Launch the Import Sorting from PLX dialog, enabling users to select a single

file or all modified PLX files for import

 Open Export Directory
Open the working files location in Windows Explorer

 Setup Preferences
Launch the Preferences dialog box

Import Imports previously exported configurations information from an *.obconf file.

Helps ensure consistent settings are used from block to block.

Export Exports all necessary export configuration settings, including export format and

preference settings, channels/sorts as well as the setting for the desired sample rate for stream exports.

OpenBridge User Guide | 111

	Table of Contents
	Overview of MATLAB Offline Analysis Tools
	TDTbin2mat
	TDTfilter
	SEV2mat
	TDTfft
	TDTdigitalfilter
	TDTthresh

	TDT Data Storage
	TDT Data Types
	Merging Blocks
	Splitting Blocks

	Importing TDT Data into MATLAB for Offline Analysis
	Requirements
	Installation

	Example Workbooks
	Averaging Example
	Housekeeping
	Importing the Data
	Use TDTfilter to extract data around our epoc event
	Ready to plot

	LFP Plot Example
	Housekeeping
	Importing the Data
	LFP Analysis

	Note Filter Example
	Housekeeping
	Importing the Data
	Loop through the notes for plotting

	Raster Peristimulus Time Histogram (PSTH) Example
	Housekeeping
	Importing the Data
	Use TDTfilter to extract data around our epoc event
	Make the histogram plot

	Filter and Threshold Raw Data Into Snippets
	Housekeeping
	Importing the Data
	Use TDTdigitalfilter to filter the streaming waveforms
	Use TDTthresh to extract snippet events
	Begin plotting
	Do Min/Max k-Means and PCA analysis

	Snippet Plot Example
	Housekeeping
	Importing the Data
	Spike Snippet Sorting
	Generate an ISI histogram for selected channels
	Waveform Plots

	Stream Plot Example
	Housekeeping
	Importing the Data
	Stream Store Plotting
	Epoc Events

	Fiber Photometry Epoch Averaging Example
	Housekeeping
	Importing the Data
	Setup the variables for the data you want to extract
	Use TDTfilter to extract data around our epoc event
	Plot Epoch Averaged Response

	Licking Bout Epoc Filtering
	Housekeeping
	Importing the Data
	Basic plotting and artifact removal
	Artifact removal
	Downsample data doing local averaging
	Detrending and dFF
	Turn Licking Events into Lick Bouts
	Time Filter Around Lick Bout Epocs
	Make a Peri-Event Stimulus Plot and Heat Map

	Export Continuous Data To Binary File
	Housekeeping
	Importing the Data
	Setup the variables for the data you want to extract

	Conversion of Continuous Data into Binary Format
	Scaling Notes
	Using TDTexport
	Using OpenBrowser or OpenBridge (EDF, DDT, PLX)
	Using the Python SDK
	Using the MATLAB SDK

	Video Review and Scoring
	Notes for Third-Party Video Recording
	View Video Synchronized with Other Data
	How To Score Videos or Timestamp Data Based on Behavior In Video
	View Data in Another Video Viewer
	Plot My Data Alongside Video

	OpenBridge User Guide
	Overview
	Workspace Basics
	About the OpenBridge Workspace
	Menus and Toolbars
	Tank Navigator Panel
	Selector Panel
	Activity Log

	Selecting a Data Set in the Tank Navigator Panel
	Selecting a Tank
	Selecting a Block

	Setting the Export Preferences
	General Tab
	NEX, DDT, EDF Tabs
	PLX Tab

	Selecting the Export Format
	Selecting Events
	Exporting Data in NEX, DDT, and EDF Formats
	Exporting Data using Batch Processing
	Using the Bridge with Offline Sorter
	Setting PLX Export Preferences
	Exporting Channels
	Exporting Tetrode Recordings

	Importing Channels
	The Toolbar and Menus
	The OpenBridge Toolbar
	OpenBridge Configuration Menu

