Menu

All Products

Fiber Photometry

RECORD REAL-TIME FLUOROPHORE RESPONSES WITH THE RZ10X

Description

Specs & Resources

Publications

Fiber photometry is a calcium imaging method for detecting neural activity. Researchers can use genetic animal models and fluorescent proteins, such as calcium (GCaMP) and dopamine (dLight), to study specific brain circuits.

TDT’s Fiber Photometry is an out-of-the-box solution designed for researchers. Our user-friendly Synapse software provides a seamless interface to the real-time LUX RZ10X processor. Integrated LUX LEDs and photosensors streamline hardware setup and debugging. TDT allows you to focus on the research, not the equipment.

Synapse and our LUX hardware simplify fiber photometry. With Synapse, record and view your fluorophore responses in real-time while behavior and video data is automatically time-locked. Optogenetics and electrophysiology can also be incorporated for multi-modal and closed-loop experiments.

2022     * RZ10X

* Goldstein, … Betley, et al. (2022). “Specificity of Varenicline in Blocking Mesolimbic Circuit Activation to Natural and Drug Rewards”. Neuroscience, 483. https://doi.org/10.1016/J.NEUROSCIENCE.2021.12.016

Liu, … Anderson, et al. (2022). “Make war not love: The neural substrate underlying a state-dependent switch in female social behavior”. Neuron. https://doi.org/10.1016/j.neuron.2021.12.002

Wu, … Halpern, et al. (2022). “Local accumbens in vivo imaging during deep brain stimulation reveals a strategy-dependent amelioration of hedonic feeding”. Proceedings of the National Academy of Sciences, 119(1). https://doi.org/10.1073/pnas.2109269118

 

2021     * RZ10X

* Copits, … Bruchas, et al. (2021). “A photoswitchable GPCR-based opsin for presynaptic inhibition”. Neuron, 109(11). https://doi.org/10.1016/J.NEURON.2021.04.026

* Ferrara, … Rosenkranz, et al. (2021). “Developmental Shifts in Amygdala Activity during a High Social Drive State”. Journal of Neuroscience, 41(45). https://doi.org/10.1523/JNEUROSCI.1414-21.2021

* Horio, Liberles. (2021) “Hunger enhances food-odour attraction through a neuropeptide Y spotlight”. Nature, 592(7853). https://doi.org/10.1038/s41586-021-03299-4

Samineni, … Gereau, et al. (2021). “Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala”. ELife, 10. https://doi.org/10.7554/eLife.68130

Robert, … Polley, et al. (2021). “A functional topography within the cholinergic basal forebrain for encoding sensory cues and behavioral reinforcement outcomes”. ELife, 10. https://doi.org/10.7554/eLife.69514

Reichenbach, … Andrews, et al. (2021). “Glucose-sensing in AgRP neurons integrates homeostatic energy state with dopamine signalling in the striatum”. BioRxiv. https://doi.org/10.1101/2021.03.22.436393

Tian, … Beier, et al. (2021). “An extended amygdala-midbrain circuit controlling cocaine withdrawal-induced anxiety and reinstatement”. BioRxiv. https://doi.org/10.1101/2021.11.05.467532

Chiacchierini, … McCutcheon, et al. (2021). “Protein Appetite Drives Macronutrient-Related Differences in Ventral Tegmental Area Neural Activity”. The Journal of Neuroscience, 41(23). https://doi.org/10.1523/JNEUROSCI.3082-20.2021

Choi, … McNally, et al. (2021). “A corticothalamic circuit trades off speed for safety during decision-making under motivational conflict”. BioRxiv. https://doi.org/10.1101/2021.11.21.469477

Feng, … He, et al. (2021). “The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the lateral amygdala via cholecystokinin”. BioRxiv. https://doi.org/10.1101/2021.04.18.440346

Penzo, … Chudasama, et al. (2021). “Divergent projections of the paraventricular nucleus of the thalamus mediate the selection of reactive and proactive defensive behaviors”. Research Square. https://doi.org/10.21203/rs.3.rs-322756/v1

Ghareh, … Marchant, et al. (2021). “Role of anterior insula cortex in context-induced relapse of nicotine-seeking”. BioRxiv. https://doi.org/10.1101/2021.12.08.471717

Holly, … Fuccillo, et al. (2021). “Striatal low-threshold spiking interneurons locally gate dopamine”. Current Biology, 31(18). https://doi.org/10.1016/J.CUB.2021.06.081

Wang, … Pitt, et al. (2021). “Scn2a severe hypomorphic mutation decreases excitatory synaptic input and causes autism-associated behaviors”. JCI Insight, 6(15). https://doi.org/10.1172/jci.insight.150698

Luchsinger, … Centanni, et al. (2021). “Delineation of an insula-BNST circuit engaged by struggling behavior that regulates avoidance in mice”. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23674-z

van Zessen, … Lüscher, et al. (2021). “Dynamic dichotomy of accumbal population activity underlies cocaine sensitization”. ELife, 10. https://doi.org/10.7554/eLife.66048

McGovern, … Root, et al. (2021). “Neurochemical Signaling of Reward and Aversion to Ventral Tegmental Area Glutamate Neurons”. The Journal of Neuroscience, 41(25). https://doi.org/10.1523/JNEUROSCI.1419-20.2021

Yau, … McNally, et al. (2021). “The Roles of Basolateral Amygdala Parvalbumin Neurons in Fear Learning”. The Journal of Neuroscience, 41(44). https://doi.org/10.1523/JNEUROSCI.2461-20.2021

Melchior, … Winder, et al. (2021). “Cocaine Augments Dopamine-Mediated Inhibition of Neuronal Activity in the Dorsal Bed Nucleus of the Stria Terminalis”. Journal of Neuroscience, 41(27). https://doi.org/10.1523/JNEUROSCI.0284-21.2021

Smiley, … Gass, et al. (2021). “Adolescent exposure to delta-9-tetrahydrocannabinol and ethanol heightens sensitivity to fear stimuli”. Behavioural Brain Research, 415. https://doi.org/10.1016/J.BBR.2021.113517

Zhang, … Ma, et al. (2021). “Ventral striatal islands of Calleja neurons control grooming in mice”. Nature Neuroscience, 24(12). https://doi.org/10.1038/s41593-021-00952-z

Thirtamara Rajamani, … Harony-Nicolas, et al. (2021). “Efficiency of cell-type specific and generic promoters in transducing oxytocin neurons and monitoring their neural activity during lactation”. Scientific Reports 2021 11:1, 11(1). https://doi.org/10.1038/s41598-021-01818-x

Martyniuk, … Kellendonk, et al. (2021). “Dopamine D2Rs Coordinate Cue-Evoked Changes in Striatal Acetylcholine Levels”. BioRxiv. https://doi.org/10.1101/2021.12.08.471871

He, … Xu, et al. (2021). “5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding”. Molecular Psychiatry. https://doi.org/10.1038/s41380-021-01220-z

Jung, … Kim, et al. (2021). “A forebrain neural substrate for behavioral thermoregulation”. Neuron. https://doi.org/10.1016/j.neuron.2021.09.039

Jean-Richard-dit-Bressel, … McNally, et al. (2021). “Instrumental aversion coding in the basolateral amygdala and its reversion by a benzodiazepine”. Neuropsychopharmacology 2021. https://doi.org/10.1038/s41386-021-01176-2

Froemke, … Jung, et al. (2021). “Neural circuitry for maternal oxytocin release induced by infant cries”. Research Square. https://doi.org/10.21203/rs.3.rs-970204/v1

Kutlu, … Calipari, et al. (2021). “Dopamine release in the nucleus accumbens core signals perceived saliency”. Current Biology, 31(21). https://doi.org/10.1016/j.cub.2021.08.052

Goldstein, … Alhadeff, et al. (2021). “Hypothalamic detection of macronutrients via multiple gut-brain pathways”. Cell Metabolism, 33(3). https://doi.org/10.1016/j.cmet.2020.12.018

Spring, … Wheeler, et al. (2021). “Chronic Stress Prevents Cortico-Accumbens Cue Encoding and Alters Conditioned Approach”. The Journal of Neuroscience, 41(11). https://doi.org/10.1523/JNEUROSCI.1869-20.2021

Dong, … Williams, et al. (2021). “Time and metabolic state-dependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo”. Molecular Metabolism, 54. https://doi.org/10.1016/j.molmet.2021.101352

Park, … Kim, et al. (2021). “Social isolation impairs the prefrontal-nucleus accumbens circuit subserving social recognition in mice”. Cell Reports, 35(6). https://doi.org/10.1016/j.celrep.2021.109104

He, … Xu, et al. (2021). “Barbadin Potentiates Long-Term Effects of Lorcaserin on POMC Neurons and Weight Loss”. The Journal of Neuroscience, 41(26). https://doi.org/10.1523/JNEUROSCI.3210-20.2021

Norman, … Morishita, et al. (2021). “Post-error recruitment of frontal sensory cortical projections promotes attention in mice”. Neuron, 109. https://doi.org/10.1016/j.neuron.2021.02.001

Sherathiya, … Lerner, et al. (2021). “GuPPy, a Python toolbox for the analysis of fiber photometry data”. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-03626-9

de Kloet … Mansvelder, et al “Bi-directional regulation of cognitive control by distinct prefrontal cortical output neurons to thalamus and striatum”. Nature Communications Mar, 2021. doi: 10.1038/s41467-021-22260-7

Stern … Friedman, et al “Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons”. Cell Metabolism Mar, 2021. doi: 10.1016/j.cmet.2021.03.001

Peters … McCutcheon, et al “Distracting stimuli evoke ventral tegmental area responses in rats during ongoing saccharin consumption”. European Journal of Neuroscience Mar, 2021. doi: 10.1111/ejn.15108

Sathyanesan … Gallo, et al “Disruption of neonatal Purkinje cell function underlies injury-related learning deficits”. Proceedings of the National Academy of Sciences Mar, 2021. doi: 10.1073/pnas.2017876118

Bruno … Barker, et al “pMAT: An open-source software suite for the analysis of fiber photometry data”. Pharmacology Biochemistry and Behavior Feb, 2021. doi: 10.1016/j.pbb.2020.173093

Mayer … Blakely, et al “There’s no place like home? Return to the home cage triggers dopamine release in the mouse nucleus accumbens”. Neurochemistry International Jan, 2021. doi: 10.1016/j.neuint.2020.104894

Karigo … Anderson, et al “Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice”. Nature Jan, 2021. doi: 10.1038/s41586-020-2995-0

 

2020

Seiler, … Lerner, et al. (2020). “Dopamine signaling in the dorsomedial striatum promotes compulsive behavior”. BioRxiv. https://doi.org/10.1101/2020.03.30.016238

Alabi, … Fuccillo, et al. (2020). “Disruption of Nrxn1α within excitatory forebrain circuits drives value-based dysfunction”. ELife, 9. https://doi.org/10.7554/eLife.54838

Sofia Beas … Penzo, et al “A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding”. Nature Communications Dec, 2020. doi: 10.1038/s41467-020-19980-7

He … Xu, et al “Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance”. Nature Communications Dec, 2020. doi: 10.1038/s41467-020-15982-7

Hsu … Roitman, et al “Thirst recruits phasic dopamine signaling through subfornical organ neurons”. Proceedings of the National Academy of Sciences Dec, 2020. doi: 10.1073/pnas.2009233117

Bicks … Morishita, et al “Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior”. Nature Communications Dec, 2020. doi: 10.1038/s41467-020-14740-z

Jaramillo … Centanni, et al “BNST transient activity associates with approach behavior in a stressful environment and is modulated by the parabrachial nucleus”. Neurobiology of Stress Nov, 2020. doi: 10.1016/j.ynstr.2020.100247

Miletta … Horvath, et al “AgRP neurons control compulsive exercise and survival in an activity-based anorexia model”. Nature Metabolism Nov, 2020. doi: 10.1038/s42255-020-00300-8

Yamamuro … Morishita, et al “A prefrontal–paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice”. Nature Neuroscience Oct, 2020. doi: 10.1038/s41593-020-0695-6

Root … Morales, et al “Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior”. Cell Reports Sep, 2020. doi: 10.1016/j.celrep.2020.108094

Liu … McNally, et al “The Mesolimbic Dopamine Activity Signatures of Relapse to Alcohol-Seeking”. The Journal of Neuroscience Aug, 2020. doi: 10.1523/jneurosci.0724-20.2020

Barbano … Morales, et al “VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors”. Neuron Jul, 2020. doi: 10.1016/j.neuron.2020.04.024

Cho … Sohal, et al “Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning”. Nature Neuroscience Jul, 2020. doi: 10.1038/s41593-020-0647-1

Gadziola … Wesson, et al “A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement”. Cell Reports Jul, 2020. doi: 10.1016/j.celrep.2020.107919

Jacobs, Moghaddam “Prefrontal Cortex Representation of Learning of Punishment Probability During Reward-Motivated Actions”. The Journal of Neuroscience Jun, 2020. doi: 10.1523/jneurosci.0310-20.2020

Steinberg … Malenka, et al “Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning”. Neuron Jun, 2020. doi: 10.1016/j.neuron.2020.03.016

Salimando … Winder, et al “BNST GluN2D-Containing NMDA Receptors Influence Anxiety- and Depressive-like Behaviors and ModulateCell-Specific Excitatory/Inhibitory Synaptic Balance”. The Journal of Neuroscience May, 2020. doi: 10.1523/jneurosci.0270-20.2020

Tan … Zuker, et al “The gut–brain axis mediates sugar preference”. Nature Apr, 2020. doi: 10.1038/s41586-020-2199-7

Berland … Luquet, et al “Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons”. Cell Metabolism Apr, 2020. doi: 10.1016/j.cmet.2020.02.010

Lafferty … Britt, et al “Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking”. Cell Reports Mar, 2020. doi: 10.1016/j.celrep.2020.02.095

Pignatelli … Bonci, et al “Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice”. Molecular Psychiatry Mar, 2020. doi: 10.1038/s41380-020-0686-8

Corkrum … Araque, et al “Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity”. Neuron Mar, 2020. doi: 10.1016/j.neuron.2019.12.026

Konanur … Roitman, et al “Phasic dopamine responses to a food-predictive cue are suppressed by the glucagon-like peptide-1 receptor agonist Exendin-4”. Physiology & Behavior Mar, 2020. doi: 10.1016/j.physbeh.2019.112771

Marcus … Patel, et al “Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening”. Neuron Mar, 2020. doi: 10.1016/j.neuron.2019.12.024

Gao … Penzo, et al “Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus”. Nature Neuroscience Feb, 2020. doi: 10.1038/s41593-019-0572-3

Salimando … Winder, et al “BNST GluN2D-Containing NMDA Receptors Influence Anxiety-and Depressive-like Behaviors and Modulate Cell-Specific Excitatory/Inhibitory Synaptic Balance”. The Journal of Neuroscience , 2020. doi: 10.1523/jneurosci.0270-20.2020

 

2019

Heifets … Malenka, et al “Distinct neural mechanisms for the prosocial and rewarding properties of MDMA”. Science Translational Medicine Dec, 2019. doi: 10.1126/scitranslmed.aaw6435

Mendoza … Britt, et al “Cue-Evoked Dopamine Neuron Activity Helps Maintain but Does Not Encode Expected Value”. Cell Reports Nov, 2019. doi: 10.1016/j.celrep.2019.09.077

Alhadeff … Betley, et al “Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits”. Neuron Sep, 2019. doi: 10.1016/j.neuron.2019.05.050

Shi … Fu, et al “A Rare Mutation of β1-Adrenergic Receptor Affects Sleep/Wake Behaviors”. Neuron Sep, 2019. doi: 10.1016/j.neuron.2019.07.026

Sengupta, Holmes “A Discrete Dorsal Raphe to Basal Amygdala 5-HT Circuit Calibrates Aversive Memory”. Neuron Aug, 2019. doi: 10.1016/j.neuron.2019.05.029

Guo … Polley, et al “The Cholinergic Basal Forebrain Links Auditory Stimuli with Delayed Reinforcement to Support Learning”. Neuron Jul, 2019. doi: 10.1016/j.neuron.2019.06.024

Parker … Bruchas, et al “A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward”. Cell Jul, 2019. doi: 10.1016/j.cell.2019.06.034

Choi … McNally, et al “Paraventricular Thalamus Controls Behavior during Motivational Conflict”. The Journal of Neuroscience Jun, 2019. doi: 10.1523/jneurosci.2480-18.2019

Feng … Li, et al “A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine”. Neuron May, 2019. doi: 10.1016/j.neuron.2019.02.037

 

Cameron … Witten, et al “Increased Cocaine Motivation Is Associated with Degraded Spatial and Temporal Representations in IL-NAc Neurons”. Neuron May, 2019. doi: 10.1016/j.neuron.2019.04.015

Mansy … Oweiss, et al “Spatial detection characteristics of a single photon fiber photometry system for imaging neural ensembles *”. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) Mar, 2019. doi: 10.1109/ner.2019.8717005

Zimmer … Dietrich, et al “Functional Ontogeny of Hypothalamic Agrp Neurons in Neonatal Mouse Behaviors”. Cell , 2019. doi: 10.1016/j.cell.2019.04.026

Holly … Fuccillo, et al “Striatal Low-Threshold Spiking Interneurons Regulate Goal-Directed Learning”. Neuron , 2019. doi: 10.1016/j.neuron.2019.04.016

Li … Krashes, et al “Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food Contingent on Caloric State”. Cell Metabolism , 2019. doi: 10.1016/j.cmet.2018.10.016

Robinson … Gradinaru, et al “Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1”. eLife , 2019. doi: 10.7554/elife.48983

Bai … Knight, et al “Genetic Identification of Vagal Sensory Neurons That Control Feeding.”. Cell , 2019. doi: 10.1016/j.cell.2019.10.031

 

2018

Pascoli … Lüscher, et al “Stochastic synaptic plasticity underlying compulsion in a model of addiction”. Nature Dec, 2018. doi: 10.1038/s41586-018-0789-4

Reed … Britt, et al “Coordinated Reductions in Excitatory Input to the Nucleus Accumbens Underlie Food Consumption”. Neuron Sep, 2018. doi: 10.1016/j.neuron.2018.07.051

Walsh … Malenka, et al “5-HT release in nucleus accumbens rescues social deficits in mouse autism model”. Nature Aug, 2018. doi: 10.1038/s41586-018-0416-4

Saunders … Janak, et al “Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties”. Nature Neuroscience Jul, 2018. doi: 10.1038/s41593-018-0191-4

Giza … Lee, et al “The BDNF Val66Met Prodomain Disassembles Dendritic Spines Altering Fear Extinction Circuitry and Behavior”. Neuron Jul, 2018. doi: 10.1016/j.neuron.2018.05.024

Beas … Penzo, et al “The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism”. Nature Neuroscience Jun, 2018. doi: 10.1038/s41593-018-0167-4

Fang … Lin, et al “A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors”. Neuron Apr, 2018. doi: 10.1016/j.neuron.2018.02.019

Sengupta … McNally, et al “Basolateral Amygdala Neurons Maintain Aversive Emotional Salience”. The Journal of Neuroscience Mar, 2018. doi: 10.1523/jneurosci.2460-17.2017

Augustine … Oka, et al “Hierarchical neural architecture underlying thirst regulation”. Nature Mar, 2018. doi: 10.1038/nature25488

Wang … Krauzlis, et al “Activation of Striatal Neurons Causes a Perceptual Decision Bias during Visual Change Detection in Mice”. Neuron Mar, 2018. doi: 10.1016/j.neuron.2018.01.049

Chen … Dan, et al “A Hypothalamic Switch for REM and Non-REM Sleep”. Neuron Mar, 2018. doi: 10.1016/j.neuron.2018.02.005

 

2017

Hashikawa … Lin, et al “Esr1+ cells in the ventromedial hypothalamus control female aggression”. Nature Neuroscience Nov, 2017. doi: 10.1038/nn.4644

Barker … Morales, et al “Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission”. Cell Reports Nov, 2017. doi: 10.1016/j.celrep.2017.10.066

Calipari … Nestler, et al “Dopaminergic dynamics underlying sex-specific cocaine reward”. Nature Communications Apr, 2017. doi: 10.1038/ncomms13877

 

2016

Wells … Halassa, et al “Thalamic reticular impairment underlies attention deficit in Ptchd1Y/− mice”. Nature Mar, 2016. doi: 10.1038/nature17427

Zalocusky … Deisseroth, et al “Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making”. Nature Mar, 2016. doi: 10.1038/nature17400

Calipari … Nestler, et al “In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward”. Proceedings of the National Academy of Sciences of the United States of America , 2016. doi: 10.1073/pnas.1521238113

 

2015

Wimmer … Halassa, et al “Thalamic control of sensory selection in divided attention”. Nature Oct, 2015. doi: 10.1038/nature15398

Request a Quote

Flexible Configurations for the RZ10X

Record from Multiple Subjects or Sites

The RZ10X can record from two subjects or sites simultaneously. Easily customize and modify your RZ10X for your changing experiments.

 

Record from Multiple Fluorophores

Record GCaMP and RCaMP responses from up to two sites with interchangeable LEDs. Also stimulate simultaneously with optogenetics.

Record from Multiple Subjects | TDT's Fiber Photometry System

 

Record from Multiple Sites | TDT's Fiber Photometry System

 

 

 

 

 

 

 

Detect, Connect and Go!

The Fiber Photometry Gizmo streamlines running experiments in Synapse for the RZ10X.

Real-Time Signal Visualization

Removing motion artifact is easy with our real-time signal processor. A few clicks and the ΔF/F can be calculated to confirm a positive response from your animals during experimental paradigms. Another click and the isosbestic signal (with motion artifact) can be removed from the GCaMP response for a normalized ΔF/F.

Additional functionalities include an integrated power meter and fiber bleaching.

Fiber Photometry Gizmo

LUX Behavioral Integration

Behavior

Use the iCon to integrate third party behavioral boxes with your fiber photometry recordings and view evoked responses in real-time.

LUX Video Integration

Video

Synchronize video recordings from up to two USB cameras. Incorporate scoring and timestamps both online and offline.

Data Import and Analysis

Offline Analysis

Synapse data can be exported to Matlab, Python, Excel, or another analysis software of your choice. With TDT, you no longer need to worry about precisely aligning behavioral codes with neural responses. The integration of your behavioral, video, and fiber photometry data into one data structure ensures consistent timing and minimal synchronization errors.

Check out the these Matlab and Python examples for offline analysis code for fiber photometry.

Real-time Lock-In Amplification

Lock-in amplification is a signal processing technique that improves the signal-to-noise ratio of fiber photometry. With lock-in amplification, small fluorophore responses can be detected and extracted from the raw signal in real-time.

How Does Lock-In Amplification Work?

LEDs are driven at a fixed, sinusoidal frequency (E1 and E2) through a fiber optic cable. The brain target is then excited to record the fluorophore responses (F1 and F2). The raw signal is detected, but the fluorophore responses are obscured by the background noise.

Lock-in amplification is then applied and uses the carrier frequency of the LEDs to extract the fluorophore signal from the noise of the raw signal. In addition, multiple LEDs can be driven at different frequencies. This allows for the simultaneous detection of multiple signals, including GCaMP and isosbestic.

Webinar

Introduction to the RZ10X for Fiber Photometry

Learn more about TDT’s integrated fiber photometry, and how to leverage this system for GCaMP and dLight recordings.

Play Webinar

Commitment to Your Research

We understand that every experiment is dependent on your specific research. TDT service professionals work with one job in mind: to ensure that you get the help you need.

Get a Quote Started Today