
RPvdsEx Manual

 Updated: 12/12/24

ii RPvdsEx
Copyright
©2000-2024 Tucker-Davis Technologies, Inc. (TDT). All rights reserved.

No part of this manual may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording, for any
purpose without the express written permission of TDT.

Tucker-Davis Technologies
11930 Research Circle
Alachua, FL 32615 USA
Phone: (+1)386.462.9622
Fax: (+1)386.462.5365

License and Trademark
Windows is a registered trademark of Microsoft Corporation.

Notices
The information contained in this document is provided “as is,” and is subject to
being changed, without notice. TDT shall not be liable for errors or damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein.

The latest versions of TDT documents are always online at
https://www.tdt.com/support/user-manuals.html.

iii
Contents

Introduction	to	RPvdsEx
DSP	Basics	and	System	3 .. 	3

Before	You	Begin.. 	5

Part	1:	RPvdsEx	Fundamentals
The	RPvdsEx	Environment .. 	9

The	Components ..	21

Macros..	33

Time	Saving	RPvdsEx	Techniques ..	37

Part	2:	Circuit	Design
Circuit	Design	Basics..	47

Hardware	Considerations ..	55

Multi‐Channel	Circuit	Design...	61

MultiProcessor	Circuit	Design ...	69

Digital	I/O	Circuit	Design ..	79

Part	3:	Reference
Macro	Reference ..	85

Component	Reference..	93

Audio	Processing..	93

Basic	Analysis... 	101

Basic	Math... 	107

Buffer	Operations... 	123

Coefficient	Generators... 	151

Counters	and	Logic .. 	159

Data	Reduction.. 	175

Delay	Functions ... 	191

Device	Status .. 	201

Digital	Filters.. 	205

Exponents	and	Logs... 	219

Gating	Functions... 	223

Helpers .. 	227

iv RPvdsEx
Input/Output .. 	241

Integer	Math... 	253

Multi‐processor ... 	263

NeuroAnalysis .. 	273

OpenEx	Headers .. 	291

State/Flow	Control ... 	295

Trigonometry ... 	301

Type	Conversion .. 	305

Waveform	Generators ... 	323

Menu	and	Toolbar	Reference... 	333

Part	4:	Troubleshooting
Troubleshooting .. 	345

Revision	History... 	353

Appendix	A:	Sampling
Sampling .. 	361

Introduction	to	RPvdsEx

2 RPvdsEx

3

DSP	Basics	and	System	3
System 3 is TDT’s integrated hardware and software research platform. The modular,
programmable hardware systems are built around a powerful group of digital signal
processors (DSPs), specifically designed to perform complex signal processing
algorithms in real-time. Signal processing—the manipulation or analysis of analog or
digital signals—is the core function of every TDT workstation. System 3 real-time
processors can be used for a broad range of applications and can be used to
process virtually any type of signal including sound, biological signals, and many
others. Processing may include storage, reconstruction, filtering, compression, or
feature extraction. Every time you play a tone, filter a noisy input signal, or store
spike data, you are signal processing. When you do this using TDT hardware, you’re
putting the power of System 3’s real-time processors to work for you.

Digital Signal Processors ‐ DSPs
The processors are available in several different form factors, utilizing one or more
DSPs. A DSP is nothing more than a specialized microprocessor. This programmable
device is designed to make quick calculations and execute signal processing specific
operations. From a top-down approach, you can consider the DSP as a
programmable “black box” with points of input and output. Each TDT processor
module that inputs real world analog signals also includes analog-to-digital converters
(ADCs) and those that output analog signals include digital-to analog converters
(DACs). Signals can then be input to the device and manipulated digitally before
storing the result or playing a signal out. All of these tasks are configured via the
RPvdsEx design interface.

Why RPvdsEx?
To optimize performance, DSPs must be programmed in low-level assembly code.
Because programming in assembly is a complex, tedious, and lengthy process that
requires the programmer to be familiar with the target processor’s architecture, DSPs
are typically programmed “at the factory” to run specialized time-critical tasks. In
most implementations, the end-user cannot modify the “embedded” DSP program,
and so the flexibility that is often critical for research applications is lost.

The System 3 processors are controlled using a common configuration tool, our
Real-time Processor Visual Design Studio (RPvdsEx). This graphical design interface
gives you unparalleled control over signal presentation and data acquisition, allowing
you to customize the function of each signal-processing module in your system.

RPvdsEx gives you control over the DSP without the complexity of writing assembly
code.
DSP Basics and System 3

4 RPvdsEx
The Processing Chain
RPvdsEx includes a powerful library of over 300 components, representing a variety
of fundamental processing tasks. Using RPvdsEx you can combine components to
create exactly the processing function you require. This ordered set of tasks is called
the processing chain and it takes the form of a series of linked components that
form a “circuit”. Each component maps to a segment of optimized DSP code, and
all the code segments are joined together to make a master program by the
RPvdsEx compiler.

TDT processors load your custom processing chain through the PC interface. When
the processor is running, the processing chain is executed on every tick of the
sample clock. In this way, TDT real-time processors are “field configurable.” Your
application is loaded when you are ready to run your protocol, and the DSP can be
reconfigured rapidly if you need to make any changes.

Using Compiled Circuit Files
Compiled circuit files can be run from TDT run-time software applications or custom
applications, created using TDT development tools.

The design paths for using System 3 are outlined below.

System	3	Design	Path

Higher-level software applications load the circuit to the hardware at run-time and
give the user access to experimental parameters while the experiment is running.
DSP Basics and System 3

5

Before	You	Begin

PC System Requirements
The recommended operating systems for all TDT systems are Windows® 7 and 10.

Recommended PC Specs:

• Memory: 1 GB

• Hard Drive: 1GB minimum of available space for installation (total recom-
mended space depends on system and research requirements)

• Processor: 2.0 GHz or faster

• Video Card w/ 64 MB

• 2.2 compliant PCI Express slot (required for Optibit Interface cards)

• DVD-R or CD combo

Installation
RPvdsEx is installed as part of the TDT Drivers installation. See your system’s
installation guide for installation instructions.

Hardware Requirements
Some RPvdsEx circuit design features are not available unless your PC is connected
to a TDT system, so it is a good idea to set up your hardware before you begin
working in RPvdsEx. See your system’s installation guide for installation and set-up
instructions.

Organization of the Manual
This manual is organized in the following sections:

RPvdsEx Fundamentals About the workspace, the components, and macros.

Circuit Design Design techniques for basic, multi-channel, multi-
processor, and digital I/O circuits.

Reference A reference for macros, components, menus and
toolbars.

Troubleshooting Anomalies, common design problems, and debugging
circuits.
Before You Begin

6 RPvdsEx
Before You Begin

Part	1:	RPvdsEx	Fundamentals

8 RPvdsEx

9

The	RPvdsEx	Environment

Overview of the Workspace
The RPvdsEx workspace has been designed for ease of use and flexibility. Circuit
diagrams, representing the processing chain, are created on the sheets of a tabbed
window using drag-and-drop techniques. Unless otherwise assigned, all sheets of a
window form a single complete circuit. When using a multi-DSP device, sheets or
segments of the circuit can be assigned to one or more processors.

Windows and toolbars can be arranged to customize the workspace for easy access
to commonly used components and design tools. Before making changes to the
workspace it will appear similar to the illustration below.

The workspace contains the following elements:

Main Toolbar (File/Edit/View)

Open, create, and save files or zoom and pan the view.

Implement Toolbar

Access tools for compiling and running the circuit or select and configure the device
setup.
The RPvdsEx Environment

10 RPvdsEx
Components Toolbar

Select a group button to access hundreds of components for signal processing tasks;
organized into intuitive groups.

Common Components Toolbar

Select one of the most commonly used components.

Tabbed Window

Displays the current sheet. Click and drag to arrange and connect components to
form a circuit diagram.

Sheet Tabs

Sheets are navigated using tabs at the bottom left corner of the tabbed sheet
window allowing you to quickly switch between areas of the circuit. Sheets organize
complex circuits and allow you to assign individual sheets to one or more DSPs on
a multi-DSP device. They can be added and removed at any time.

Build Window

View compilation status, errors, or warnings or select an error in the list to navigate
to the problem area of the circuit.

Menus and Toolbars
RPvdsEx provides you with a full set of menus and toolbars. Using menu commands
and toolbar buttons, you can create, open, and save circuit files; build new circuits
or edit existing circuits; and access hardware configuration settings. The menus and
toolbars are covered in detail in the “Menu and Toolbar Reference” on page 333.

The Sheets
When a new file is created a default sheet, Sheet 0, is created and displayed in
the tabbed window. Sheets can be added, removed, resized, or renamed using a
shortcut menu accessed by right-clicking the tabbed window.

When using a multi-DSP device, users can assign each sheet to one or more
processors or a core. Users can move around the sheet and adjust the zoom level
using commands found on the View menu.

Viewing Sheets
A circuit diagram may be contained on a single sheet or across multiple sheets. By
default, magnification is set to allow the components to be viewed clearly. Areas out
of view can be brought into view using standard MS Windows scroll bars or zoom
and pan features. A sheet can be brought to the foreground by clicking the
corresponding tab located in the bottom left corner of the window.
The RPvdsEx Environment

RPvdsEx 11
Zoom and Pan Features
Zoom and pan features are available on the View menu or on the main toolbar.

 Zoom: When the Zoom command is selected, the pointer changes to a
magnifying glass and clicking an area of the sheet zooms in on that area. The
Zoom command is in effect until another zoom or pan feature is selected.

Tip: To quickly turn off the Zoom command, select the Pan feature and click the
sheet once.

 Zoom To Fit: When the Zoom To Fit command is selected magnification is
automatically adjusted so everything on the current sheet is in view.

 Zoom In: When the Zoom In command is selected magnification is increased.
The command can be selected again to further increase magnification.

 Zoom Out: When the Zoom Out command is selected magnification is
decreased. The command can be selected again to further decrease magnification.

 Pan: When the Pan command is selected the pointer changes to a hand and
dragging moves the sheet in the corresponding direction. The pointer returns to
normal after one use. The Pan command can be selected again to move the sheet
again.

Adding and Removing Sheets
A single circuit diagram can be divided across several sheets to make working with
the circuit more manageable.

To add a sheet:

1. Right-click the window and click Add Sheet on the shortcut menu.

2. The sheet is added to the window and a tab for the new sheet is visible in
the bottom left corner.

To remove a sheet:

1. Click the tab for the sheet to be removed.
2. Right-click the window and click Delete Sheet on the shortcut menu.

Warning!: Any portion of the circuit diagram on the current sheet will be lost
when the sheet is deleted.

3. Click Yes to confirm the deletion.
The RPvdsEx Environment

12 RPvdsEx
To move a sheet:

• Click and drag the tab of the sheet you wish to move.

Renaming a Sheet
Sheet names can be used to add organization to circuits, making it easier to move
directly to an area of interest.

To change the sheet name:

1. Right-click the window and click Sheet Setup on the shortcut menu.

2. Type a new name in the Sheet Name box.

3. Click OK.

Changing the Sheet Size
The default sheet is 1020 x 782 pixels. If a component is dragged off of the sheet,
RPvdsEx will automatically resize the sheet to include the component. The size of
the current sheet can also be modified in the Sheet Setup dialog box. The default
sheet size for all new files can be changed in the Preferences dialog, available from
the Edit menu.

To change the sheet size:

1. Right-click the window and click Sheet Setup on the shortcut menu.
2. Select one of the Sheet Size options.

To use the Set to X:___ Y:___ pixels option, and in the X and Y boxes,
type new values.

See Choosing a Sheet Size Option below for more information on the
available options.

3. Click OK.
The RPvdsEx Environment

RPvdsEx 13
The change is applied to the current sheet. Other sheets in the file are not
changed.

Choosing a Sheet Size Option
The Sheet Size option provides users with an extra measure of flexibility. They also
provide quick solutions for the common situations listed below.

Duplicating Sheets
When parallel structures must be added to a circuit, such as additional channels of
filtering or acquisition, it might save time to duplicate an existing sheet.

Be sure to review the new sheet and make any necessary modifications after
duplication.

To duplicate a sheet:

1. Click the tab corresponding to the sheet to be duplicated.
2. Right-click the window and click Duplicate Sheet on the shortcut menu.

3. Review the duplicate sheet and re-index items such as parameter tags with
channel numbers and update the parameters of components as needed.

Assigning Sheets to a DSP
When a multi-DSP device is used, the user can assign each sheet of an RPvdsEx
file to one or more processors and a particular core of a quad core processor.
Multiple sheets can be assigned to the same processor. Because the architecture of
RX and RZ multi-processor devices differs, they are handled slightly differently.

Regardless of the processor type, an icon on the sheet tab indicates which processor
has been assigned, and if multiple processors have been assigned. See “Sheet

When: Choose:

Pasting circuit components to a sheet results in
some components being outside the sheet area.

Enlarge sheet size to fit all
components

When: Choose:

A circuit will be printed for offline viewing or
debugging.

Match the printer page setup

When: Choose:

An entire circuit being visible on screen will help
viewing or debugging.

Set to X:___ Y:___ pixels
The RPvdsEx Environment

14 RPvdsEx
Icons” on page 15, for more information. If a processor is a QDSP (quad core)
processor and QDSP has been enabled in the Set Hardware Parameters dialog, a
core letter is also displayed. See “Manual Device Selection” on page 19, for more
on using the Set Hardware Parameters dialog.

RZ Devices

By default all sheets are assigned to the first processor, DSP-1 and if the DSP is
a quad core DSP, the sheet is assigned to Core-A.

To assign a sheet to a processor(s):

1. Right-click the sheet and click Assign DSP. The Assign to DSP dialog box
is displayed.

2. Select a DSP from the drop down list and, if needed, select a core.

If you wish to replicate the circuit on multiple DSPs, click the Replicate
Circuit check box to display an extended view.

Click and clear check boxes to select or deselect the processor(s) to be
assigned to the sheet.

Note: Users should be familiar with the number of DSPs available in their
device and only assign sheets to those DSP.

3. Click OK.

RX Devices

By default all sheets are assigned to the main processor.

To assign a sheet to a processor:

1. Right-click the sheet and click Assign DSP. The Assign to DSP dialog box
is displayed.

2. Click OK.
To replicate the circuit on a sheet on multiple processors:

1. Right-click the sheet and click Assign DSP. The Assign to DSP dialog box
is displayed.

2. Click the Replicate Circuit check box and select the check boxes for the
desired processor(s).
The RPvdsEx Environment

RPvdsEx 15
3. Click OK.

Single Processor Devices

All sheets are assigned to a single processor and the Assign DSP functionality is not
available.

Sheet Icons

When sheets in an RPvdsEx file are assigned to different processors in a multi-
processor device such as an RZ2, an icon next to the sheet name identifies the
associated processor as illustrated in the figure above. The icons are described as
follows.

RZ Devices

 A pProcessors (1 through 8) as designated by the numeral in the icon.

 A QDSP Processor (1 through 8) as designated by the numeral in the icon
and a core (A – D) as designated by the letter on the icon.

 Replicated sheet - a sheet that is assigned to more than one DSP.

 Replicated QDSP sheet - a sheet that is assigned to more than on QDSP
processors – lowest number processor is designated by numeral and a core (A –
D) as designated by the letter on the icon.
The RPvdsEx Environment

16 RPvdsEx
RX Devices

 Main processor.

 Auxiliary processors 1 through 4 as designated by the Roman numeral in the
icon.

 Replicated sheet - a sheet that is assigned to the main processor and
replicated on one or more of the auxiliary processors.

The Build Window
The Build Window (previously called the message window) is provided specifically
for compilation and error reports. By default, the window is docked at the bottom of
the RPvdsEx workspace. The window can be moved and resized and has two tabs
– Output and Task List.

Output
The Output window displays details about the compilation such as the start and
success of compiling, loading, and running the current circuit. It also displays errors
and warnings encountered while compiling. If more than five errors are encountered
on compilation, compiling stops, and a Build failed error is displayed.

If a multi-processor device is specified in the hardware setup, this window also
reports the number of components on each processor when the circuit compiles
successfully.

Task List
The Task List window displays details about the errors and warnings listed on the
Output tab. It consists of four columns – Type, Sheet, Symbol, and Error.

Type tells the user whether the item is an error or warning.

Sheet specifies the sheet name or number where the error or warning can be
found.

Symbol specifies the specific component, hop, or symbol that caused the error.

Error describes the problem through a comment.
The RPvdsEx Environment

RPvdsEx 17

Errors listed in the Task List are highlighted in the circuit diagram in red and
warnings are highlighted in blue. To quickly access the sheet on which the error or
warning occurred, click the icon next to the message. The correct sheet will be
displayed and the error or warning will appear in bold black in the circuit diagram.
Click the icon again to toggle the colors between bold black and red for errors and
blue for warnings. To troubleshoot RPvdsEx related problems, see “Common
RPvdsEx Error Messages and Warnings” on page 347.

Compiling Selected Processors
When using an RX multi-processor device it is possible to compile, build, and run
segments of the circuit assigned to a selected individual processor. This gives the
user more control over the compilation process. By default, when a circuit is
compiled, the entire circuit is compiled. After a single processor select command
(such as Main DSP or Aux One) has been selected, all compilation and code-
building tasks are performed on the selected processor only. For example, if Aux
One has been selected and the compile button is clicked, only segments of the
circuit assigned to auxiliary processor one will be compiled and the messages window
will display the result of compilation and number of components for auxiliary processor
one only.

Accessing the Processor Selection Commands
The processor selection commands are available from the Implement menu or the
Processor Select toolbar.

 Main DSP Selects main processor

 Aux One Selects first auxiliary processor

 Aux Two Selects second auxiliary processor

 Aux Three Selects third auxiliary processor

 Aux Four Selects fourth auxiliary processor

 All DSPs Selects all processors
The RPvdsEx Environment

18 RPvdsEx
When a processor is selected, its icon (menu) or button (toolbar) will appear
“pressed.” Either a single processor or all processors may be selected. Selection of
two, three, or four processors is not supported.

Note: These commands are only available when the device selected in the Set Hardware
Parameters dialog box is an RX device.

Hop Related Compilation Errors

Circuits that use zHops or MCzHops might generate errors when compiling only a
single processor of a multi-processor circuit. The zHops and MCzHops allow transfer
of signals between processors within a device and must be used in pairs.

If the matching zHops are assigned to a processor that is not being compiled, a "No
matching zHop found" error will be generated for each zHop used. If the circuit uses
zHops it must be modified before it can be compiled. For more information about
zHops see “MCzHopIn” on page 266 and “zHopIn” on page 271.

File Formats
The circuit designed in RPvdsEx is loaded to the processor as a control object. The
control object contains the compiled processing chain (DSP code) for the circuit
diagram and can be used with TDT run-time applications or custom programs
developed using TDT ActiveX controls.

By default, both the graphical circuit representation and the compiled control object
are saved in a single file with the .rcx format. RPvdsEx also supports the legacy
two-file format used by earlier versions of TDT software.

Legacy File Formats
The legacy format consists of two separate files. The circuit diagram is saved in one
file in an .rpx or .rpd format and the control object must be saved separately in an
.rco format.

To revert to the legacy RPX/RCO file system:

1. On the Edit menu, click Preferences.
2. Clear the Embed RCO object file check box.
3. Click OK.

After performing this step, the Build RCO command is enabled (available on the
Implement menu or on the Implement toolbar) and can be used to save the control
object as a file with the .rco extension.

Device Setup
Some RPvdsEx features and components are not supported by all device types. To
ensure all the features available for your device are enabled, ensure the correct
device type is selected before beginning circuit design.
The RPvdsEx Environment

RPvdsEx 19
Automatic Device Detection
If a TDT system is connected to the PC running RPvdsEx and a new circuit is
created, RPvdsEx will automatically set the device type to the processor module
highest on the Device List in the connected system.

Manual Device Selection
The automatically selected device type can be overridden using the hardware setup
parameters.

To set the device type:

1. Click the Implement menu or click the button.

2. Click Device Setup to open the Set Hardware Parameters dialog box.
3. In the Device Select group box, select your processor from the Type

drop-down menu.
The RPvdsEx Environment

20 RPvdsEx
Depending on the device selected, the dialog box may expand to allow
configuration of more options, such as arbitrary sampling rates or digital I/O
configuration.

4. If your processor contains qDSP cards, click the QDSP compile for check
box to enable QDSP features.

5. Click OK.

Hardware Parameters
In addition to device selection, the Set Hardware Parameters dialog can be used to
set related parameters, such as device index and sampling rate.

Index

Devices in a TDT system are indexed according to their logical order, that is, the
order of the connections between devices. Each device type is indexed beginning with
1. So, index numbers higher than one only occur when the system includes more
than one module or device of the same type. The index number for a particular
device can be verified using TDT’s zBusMon program.

Sample Rate

In the Bandwidth and Timing area, you can select from a list of Standard Sample
Rates. Sample rates in the drop down menu are approximations. The actual sample
rate is shown to the right. If the selected device supports arbitrary rates, the Set
Hardware Parameters box expands to include an option for input of arbitrary rates.

Time Slices

In general, the entire processing chain is executed on each tick of the sample clock.
Time slices provide a means of processing some components less frequently. When
time slices are defined, by specifying the number of time slices here, you can assign
some components to a specific time slice (n) and are only processed on the nth
time slice of the defined number of time slices. For more on using time slices, see
page 28.

Device Configuration Register

Many devices include hardware components, such as programmable digital I/O that
can be configured using the Device Configuration Register. If the selected device
includes configurable features, the dialog box will expand to display the Device
Configuration Register. See the reference for your device for configuration information.
The RPvdsEx Environment

21
The	Components

Component Overview
Components are the building blocks of the processing chain and perform fundamental
processing tasks such as generating a tone, filtering a signal, or summing several
signals. RPvdsEx has hundreds of processing components to tailor circuit designs for
particular applications.

The following simple processing chain illustrates icons for some typical RPvdsEx
components.

Component properties depend on their function. Components have at most one
primary signal input and one primary signal output. In addition, components can have
one or more secondary inputs and outputs, also called parameters. Illustrated below
is an example of the different color-coding standards seen in RPvdsEx. Floating
Point parameters are designated by a teal coloring while Integer parameters are
designated by a dark green color. Left side parameters are Inputs, while right side
parameters are Outputs.

Component parameters are specified with initial values when the chain is loaded. The
user sets these values by clicking on the component symbol and editing the values
before the chain is run. Most parameter values can also be changed dynamically

Generator Body of Chain Terminator

(primary signal output) (signal input, modification,
then output)

(primary signal input)
The Components

22 RPvdsEx
while the chain is running. The parameter can be fed from the output signal of
another sub-chain or the value can be changed manually from the host PC (via
parameter tags). Parameters flagged as static or constant CANNOT be updated
dynamically and must be left unchanged while the circuit is running. Static parameters
have a black colored input symbol.

Component signal inputs and dynamic parameters usually expect a certain data type
such as integer, floating point, or logic. In the example below, the GaussNoise
component has an output that generates floating-point numbers. The output from
GaussNoise is connected by a link to the floating-point input on Biquad. It is
important to match data types when connecting outputs and inputs. Some
components, like ShortDelay accept any data type.

Components links may also indicate single (designated by a thin line) or multi-
channel (designated by a thicker line) data streams.

When a circuit is compiled, RPvdsEx automatically generates a processing chain that
orders components as they will be run. The maximum number of components that
can be compiled in a single circuit is 128 for single-processor devices (such as the
RA16BA) 256 per DSP RX processor devices (such as the RX5), and 768 per
DSP for Z-series processor devices (such as the RZ2).

RPvdsEx has a growing library of processing components. Detailed information,
including each component's function and its associated parameters, is described in
“Part 3: Reference” on page 83.

Component Numbering
There is a series of numbers listed above each component to denote the DSP
number, component number and time slice. The DSPs are numbered with the main
processor being assigned number 1. When a circuit is compiled, RPvdsEx orders the
components. The component numbers indicate the order components are executed in
the processing chain on that particular DSP. The Time Slice number is used to
indicate the “time slice” in which a component is executed. For more information,
see “Time Slices” on page 28.

In the following figure, the components represent the first two components in time
slice zero on the main processor of a multi-processor device or the first two
components in a circuit on a classic processor.
The Components

RPvdsEx 23

The DSP number and component number ensure that each component on each
processor will be assigned a unique set of numbers. For example, components
assigned to the main processor will have numbers from (1:1) to (1:256).
Components assigned to the first auxiliary processor will have numbers from (2:1)
to (2:256) etc.

When a circuit segment is replicated across several processors or duplicated with an
iterate box, the numbering scheme changes to reflect this difference. See “Duplication
Information” on page 31.

Links Treated as Components
Links pass signals or parameter information between components. Some links are
only a graphical representation of signal flow and do not correspond to any additional
processing task; for example, passing a signal from one process (component) to the
next process (component) in sequence. Other links, however, do represent
processing tasks, such as routing a signal to a second process that occurs later in
the processing chain. Because these links contribute to the overall demand placed on
the processor, they are treated as components and given a component number. To
keep the circuit diagram from becoming cluttered and confusing, the component
numbers assigned to links are hidden, but it is important to keep in mind the
contribution they make to the total number of components in a circuit.

The four types of link components are listed below.

1. SigPatch: A SigPatch is created when a component’s primary output signal
is routed to two or more primary inputs. Because the signal must be delayed
and routed to a later process (component) any link to a primary input
beyond the initial connection is treated as a SigPatch component.
The Components

24 RPvdsEx
2. ParFeed: A ParFeed is created when the primary output signal is routed to
a parameter input.

3. MultiFeed: A MultiFeed occurs when a primary output signal is routed to
four or more parameter inputs. This is an extension of the ParFeed
component.

A single primary output routed to three parameter inputs is treated as three
ParFeed components. A single primary output routed to four or more
parameter inputs is treated as one MultiFeed component.
The Components

RPvdsEx 25

4. PatchFeed: A PatchFeed is when a parameter output signal is routed to a

parameter input.

Data Types
When working in RPvdsEx, data types for component inputs and outputs are color
coded and type checking is performed automatically. Component ports of like colors
can be linked together. Illegal links are flagged as errors and colored red when the
circuit is compiled.
The Components

26 RPvdsEx
The following table lists currently supported data types and their general use:

Parameter Access Rules
Every component has a number of inputs and outputs called parameters. The
parameters of a component control how the component functions when running in the
processing chain. For example, the Freq parameter of the Tone component controls
what frequency signal will be generated by the Tone component.

Dynamic Access
Most processing components support some number of parameter ports that have an
initial value and are later changed 'dynamically' while the chain is running. An
example of this is shown below where the frequency of the Tone is initially set to
1000 Hz. This value can then be changed dynamically using ActiveX controls and
the parameter tag called Freq.

RPX Data Types

Float

IEEE standard. Handles majority of signal processing. Has units for
signal type carried, for example when feeding a DAC, value is in
volts, when feeding a frequency value is in Hz.

Integer

Signed integer format. Used for counters and buffer indexes. Also
used to integrate digital port input and output into a processing
circuit.

Logic

Logic signal can be High (1) or Low (0). Used to carry trigger
and enable controls and to integrate digital inputs and outputs with
the processing circuit.

Any

Used to handle any data type (except pointers). Typically used on
memory buffers when stored type does not matter as long as read
and write operations match data type.

Pointer

Used to reference data buffers within RPvdsEx. Do not directly
access these data elements.

Stereo

Carries two standard Float signals one identified as LEFT and the
other as RIGHT.

Multi-Channel

Handles any data type (except pointers). Used for multi-channel
signals.

Coefficient

Used to reference coefficient buffers within RPvdsEx.

Static

Static data format. Used for various static component settings (such
as the number of Biquads for a filter). Their values are set at
compile time.
The Components

RPvdsEx 27
Another method of dynamically changing a component parameter is to 'feed' the
parameter with the output of another component. The example below shows how to
create an AM signal by feeding the output of one tone generator into the Amp
parameter input of another.

Here the initial value of 5, specified in the second Tone's Amp parameter, has no
effect because this value is over-written on the first tick of the sample clock with the
output of the modulator Tone component.

Static Access
Some parameter inputs cannot be changed while the chain is running. They are
called static or constant. When working in RPvdsEx static parameters are color coded
in black and connecting to them, as shown below, will generate an error (link
shown in red).

Data Port Access
All Buffers and components that buffer signals, such as filters, have a data port.
This port allows direct access to the dynamic memory and program memory of a
component. This allows users to load data from a program, file, or helper component
to a memory buffer on a component such as a Serial Buffer or data can be
The Components

28 RPvdsEx
downloaded to the computer from the memory buffer. The data port (that is, the
dynamic memory of the component) is accessed through helper components from
within RPvdsEx or using ActiveX controls.

The DataTable and SourceFile can be used to send data to a data port. For
example, to use a specialized digital filter such as an IIR or FIR a data table is
created that contains the coefficients for generating the filter. In the example below a
DataTable component sends coefficients to the filter. A data table can have hundreds
of filter coefficients. Before the circuit is run the filter proprieties can be changed
within RPvdsEx by clicking the up and down arrows on the DataTable component.

Time Slices
By default, components are calculated on every tick of the processor’s sample clock.
However, there are situations where it is not necessary to calculate a component on
every sample and it wastes processing cycles to do so. Time slices provide a means
of processing some components less frequently. Most components are assigned a
time slice of 0, meaning that they are processed in all time slices (on every tick of
the processor’s sample clock). However, some components are assigned to a
specific time slice (n) and are only processed on the nth time slice of a user
defined number of time slices.

For example, if you are generating filter coefficients for a low-pass filter and the
frequency of the filter does not change, you don't need to calculate the filter
coefficients on every sample of the clock (in fact you may only need to calculate
them once). So, to conserve cycle usage on the DSP, you could set the coefficient
generator to generate coefficients in a particular time slice, say time slice 1. If there
are 10 time slices total, then the coefficients will be calculated once every 10
samples. The total number of time slices and the time slice value for individual
components can be set from within RPvdsEx.

Consider the following example where three bands of noise are FM modulated to
create a single output. The rates of modulation are low so the coefficients generator
components can be run at a decimated rate but all components, including the
coefficient generators are processed on every tick of the sample clock.

The following diagram shows the circuit without time-slicing, notice the cycle usage
is over 70%.
The Components

RPvdsEx 29

To improve circuit performance and 'free-up' DSP power for doing some other
processing, we can move all three modulating Tone generators and their
corresponding ButCoef1 coefficient generators to time-slices. Each will be placed in
its own time slice reducing the DSP cycle usage to about 45%. Note that because
the Tone components are now running at 1/10th the actual sample rate their
frequencies must be multiplied up by a factor of ten. The resulting diagram is shown
below with a chart showing sample-by-sample cycle usage for each time-slice.

Same circuit with time slicing used, note cycle usage has been reduced to 47%.
The Components

30 RPvdsEx

The chart below illustrates cycle usage for each of the ten time-slices.

Note: Time slices 7 through 10 have the lowest current usage and should be used next
when a time slice is needed.

Setting the Number of Time Slices
The number of time slices is set in the Set Hardware Parameters dialog box. To
open the dialog, click the Device Setup command on the Implement menu. The
maximum number of time slices is 200.

Specifying a Time Slice
To specify the time slice in which a component will run, double-click the component
and enter the desired number in the Time Slice box in the component's dialog box.

Time Slice Value
The Components

RPvdsEx 31

Duplication Information
When a circuit segment is replicated across several processors or duplicated with an
iterate box, a Duplication Information dialog is available to display the item number,
name, component number, time slice and parameters for each of the duplicated
components.

By right-clicking the replicated component, the user can view a table like the
following:

This table was generated for a Tone component duplicated 16 times in an iterate box
with the Freq parameter incremented with the iteration number. If this component
were also replicated across multiple processors, there would be tabs for each
applicable processor next to the DSP-1 tab. The duplication information can also be
accessed when editing the component’s parameters by clicking on the Duplication Info
button.

Also when a component is replicated or duplicated, the component numbering scheme
changes. The following figure shows the numbering to reflect the duplication:
The Components

32 RPvdsEx
The second DSP number is used to display the range of applicable DSPs if the
circuit segment is replicated across multiple processors. For example, if the circuit
segment were assigned to the main processor and replicated on two auxiliary
processors, the second DSP number would be 3.
The Components

33
Macros

Macro Overview
RPvdsEx includes very powerful macro functionality. Macros replace common circuit
constructs and provide an interface for changing circuit parameters. The underlying
macro creation tools are intended primarily for TDT use, with end users simply
inserting existing macros into their circuit. TDT has developed a core set of macros
and will continue to add to the macro library over time. Using macros reduces the
complexity of configuration at the circuit level, reducing the number of properties that
must be set in each functional block.

In the example below, large functional blocks of components designed to bandpass
filter neural data and to detect, sort, and store neural spikes are replaced by
incorporating a set of easy-to-use Macro components.

Setting parameters for each construct is accomplished at the Macro level. Macros are
added to a circuit much like other components and their properties can be configured
in each Macro’s properties dialog box. Just double-click the macro component in the
RPvdsEx workspace to open the dialog. Variables set here propagate through each of
the basic components comprising the Macro, ensuring correspondence throughout the
entire processing block. Help for each Macro component is also provided in the
properties dialog box.
Macros

34 RPvdsEx
Using macros greatly simplifies the process of modifying the underlying circuits used
in complex circuits (such as those used in OpenEx projects).

Making common changes, such as controlling time stamping, sampling rate, and
storage properties, requires fewer steps and less intimate knowledge of the details of
the circuit structure than designing circuits without macros.

See “Multi-Channel Circuit Design Strategies” on page 62, for examples of how
macros can be used to simplify multi-channel circuit design.

Adding Macros
Macro components are placed in a circuit and linked in a manner similar to that
used for traditional RPvdsEx components. They can be added to processing chains
using the Insert RPvds Macro Symbol dialog box, which can be opened using any of
the following:

• The Insert Macro icon in the RPvdsEx Components toolbar

• The Circuit Macros command on the Components menu

• The Open Macro Design command on the File menu

The macro chooser dialog allows the user to browse for existing macro and shows a
graphical representation of any selected macro component with a brief description.
Graphical symbols on the macro icon help to quickly identify the type of macro,
whether it is designed for use in OpenEx, and whether it requires the use of high
performance devices (RX or RZ).

Macros are a special type of circuit file and are stored at the following path:

TDT|RPvdsEx|Macros

Keeping all macros in this directory ensures they can easily be found when the Insert
RPvds Macro Symbol dialog opens.

Note: The macro chooser dialog is not available when editing a macro circuit. Making a
macro out of macros is not supported.
Macros

RPvdsEx 35
Identifying Symbols
A macro belonging to a particular group (e.g. Timing, Filtering, Control) will have
an identifying graphic included as part of the macro icon. Further graphics identify if
a macro is to be used exclusively with OpenEx or only with a multi-processor device
(RX or RZ). The following lists shows the graphics used for some common macro
groups.

 Timing

 Data Storing

 Filtering

 Hardware Control

 Calculators

 Input-Output

 OpenEx

 High Performance Processors (RX or RZ)

 OpenEx and High Performance Processors (RX or RZ)

Working with Macros
The symbols above can be helpful in selecting macros and debugging circuits. Macro
icons also feature color coded inputs and outputs like other components. Other
helpful features include a tabbed setup dialog with internal documentation, parameter
enabled inputs, and parameter summaries.

To open the macro setup dialog:

• Double-click the macro or right-click the macro and click Property on the
shortcut menu.
Macros

36 RPvdsEx
Parameter Enabled Inputs
Some macros have inputs that do not appear to be active (grayed out). These
inputs are enabled or disabled based on the macro parameter settings. This feature
prevents accidental connections to ports that would not be connected at compile time
based on the macro settings. For example, the filtering macros have conditional
inputs named FreqHP and FreqLP. These inputs are only enabled if the macro is set
up to provide Dynamic control of the filter corner frequencies.

Parameter Summaries
Most macros include an informative text bar across the bottom of the macro to view
parameters at a glance. When referring to the HP-LP_Filter_1Ch macro, for example,
the text bar shows the filter updating mode, the LP and HP corner frequencies and
the filter roll off.

OpenEx Macros
Macros designed for use with OpenEx are added to circuits in much the same way
as other macros and offer the same easy-to-use parameter settings dialog box.
These special macros generate information that is saved together in the compiled
circuit file and then used by OpenEx to auto-configure some aspects of the OpenEx
experiment.

All circuits developed using macros and intended for use with OpenEx must include
one and only one CoreSweepControl macro. This macro supplies required tags and
signal lines used by other macros, such as the data storing macros.

OpenEx users, see the Getting Started Tutorial in the OpenEx Manual for more
information on using macros to design circuits for OpenEx.
Macros

37
Time	Saving	RPvdsEx	Techniques

Changing Component Names Systematically
The Change Component Name dialog is accessed via the Edit|Find and Replace

menu or the button on the main toolbar. It can be used to replace all or part
of the component name(s) systematically within a selection, sheet, or entire circuit.

Find Text: Type the text to be changed.

Replace With: Type the desired text.

Scope: Choose to apply the change to a selected section of a circuit, all
components and macros on the current sheet, or the entire circuit. To use Selection
Only, select the desired area of the circuit before opening the dialog box.

Options: Choose options such as Match case and Match entire word to ensure only
the desired parameters are changed.

Replace: Click to apply the change. A message box will open and report the
number of instances changed.

Close: Click to close the dialog box without applying further changes.

Changing Parameters Systematically
The Change Parameter dialog is accessed via the Edit|Find and Replace menu or

the button on the main toolbar. It can be used to replace parameter values
systematically within a selection, sheet, or entire circuit.
Time Saving RPvdsEx Techniques

38 RPvdsEx

Param Name: Type the name of the parameter to be changed.

New Value: Type the desired value.

Scope: Choose to apply the change to a selected section of a circuit, all
components and macros on the current sheet, or the entire circuit. To use Selection
Only, select the desired area of the circuit before opening the dialog box.

Options: Choose options such as Match case and Match entire word to ensure only
the desired parameters are changed.

Update: Click to apply the change. A message box will open and report the number
of instances changed.

Close: Click to close the dialog box without applying further changes.

Using Indexing

The Indexing Setup dialog is accessed from the Edit menu. It can be used to
increment channel number parameter tags and/or time slices for selected components.

Index By: determines the number that Items to Alter will be incremented by. Each
selected component will be incremented by the value set here.

Range above current highest index: When this check box is selected the Items to
Alter will be set to a number equal to the highest index value present in the
document plus the Index By value.

Channels (~N) check box: Select to apply the setting in this dialog box to selected
channel number parameter tags, which follow the form: iChan~1.
Time Saving RPvdsEx Techniques

RPvdsEx 39
Time Slices check box: Select to apply the settings in this dialog box to selected
components that are currently in a time slice (that is, time slice not equal to 0).

To use indexing:

1. Select the components to be incremented.

2. Click the Edit menu and click Index.
3. Select the desired combination of settings in the Indexing Setup dialog box.
4. Click OK.

The settings are applied to the selected components.

Selecting Multiple Components
In the example below, an entire circuit construct has been selected. Setting in the
Indexing Setup dialog box would be applied to all components.

For example:

If the Channels (~N) check box is selected, the Time Slices check box is cleared,
and the Index By value is set to 1; then iChan~3 would be incremented to yield
iChan~4. This would be the only change.

If the Channels (~N) check box is cleared, the Time Slices check box is selected,
and the Index By value is set to 1; then the ButCoef components currently set to
time slices 5 and 6 would be moved to time slices 6 and 7 respectively. No other
components would be affected.
Time Saving RPvdsEx Techniques

40 RPvdsEx
Using the Preferences Dialog Box

The Preferences dialog is accessed from the Edit menu. It can be used to set
compiler and control object file settings.

Sort Component List: When checked, the components in each group will be
arranged in alphabetical order when viewing the component selection browser.

Embed RCO Object File: If this option is checked, the RPvdsEx file will be saved
with the extension rcx. Files with this extension contain both the graphical circuit
representation for use within RPvdsEx and the control object information to be loaded
to a device. This eliminates the need for a separate rco file.

Note: The Build RCO button on the Implement toolbar is grayed out when the check box
is selected. If a circuit is saved after this preference has been modified, RPvdsEx
will display the following message to alert the user that the file extension has been
changed:

Compiler: Set the compiler to minimize the circuit delay or the number of
components.

Set Default Sheet Size: Type new values in the X and Y boxes to set a sheet
size for all new sheets.

Make Default: To save preferences for future RPvdsEx sessions, click Make Default
and click OK.
Time Saving RPvdsEx Techniques

RPvdsEx 41
Updating Number of Channels Systematically
The Update Number of Channels dialog is accessed via the Edit|Find and Replace

menu or the button on the main toolbar. It can be used to replace channel
number parameters systematically within a selection, sheet, or entire circuit. The
change is implemented for both component parameters and macro parameters and
provides an easy way to avoid channel number mismatches.

Change to: Type the desired number of channels.

Scope: Choose to apply the change to a selected section of a circuit, all
components and macros on the current sheet, or the entire circuit. To use Selection
Only, select the desired area of the circuit before opening the dialog box.

Update: Click to apply the change. A message box will open and report the number
of instances changed.

Close: Click to close the dialog box without applying further changes.

RPvdsEx Shortcuts

Placing Links
• Press the Spacebar to activate single-click placing of a link.

Or

• Double-click the output terminal where you want to start a link.

Cancel Linking
• Right-clicking the workspace will cancel the link option.

Keyboard Shortcuts
Most standard Windows keyboard shortcuts (such as Ctrl + c to copy a selected
item) can be used in RPvdsEx.
Time Saving RPvdsEx Techniques

42 RPvdsEx
Copying Circuits
In cases where you want to repeat a circuit several times, select the block by
clicking and dragging a box around the items you want to select. Then choose copy
and paste to create a second copy of the circuit.

Using Cut, Copy, and Paste
Cut, Copy, and Paste can speed up circuit design. They affect the currently selected
items within the RPvdsEx circuit diagram. A single component or an entire circuit can
be cut, copied, or pasted. Items that are selected are surrounded by small square
selection handles. To select multiple items, hold down Shift and click each item to
select or click and drag a box around all the items to select.

For example:

Starting with a circuit that plays a tone out of channel 1, we copy and paste the
circuit to create another tone that plays out of channel 2.

1. Select the circuit by clicking and dragging a box around the entire circuit.
Items that are selected will have square selection handles around them.

2. On the Edit menu, click Copy.

Time Saving RPvdsEx Techniques

RPvdsEx 43
3. On the Edit menu, click Paste to paste a copy of the circuit.

4. Change the second DAC output to channel 2, and set the tone to the

desired frequency and amplitude.

Time Saving RPvdsEx Techniques

44 RPvdsEx
Time Saving RPvdsEx Techniques

Part	2:	Circuit	Design

46 RPvdsEx

47
Circuit	Design	Basics

Creating and Running a Simple Circuit
Earlier sections of the user guide introduced the components, macros, and provided
some information about how components are linked. The best way of putting all of
these concepts together is to create and run a simple circuit. Follow the steps below
to implement a simple counter circuit and become familiar with the basic mechanics
of the circuit design process.

To create a simple circuit, follow the steps below:

1. Ensure at least one processor module is connected to your PC and turned
on.

2. Launch RPvdsEx.
3. On the File menu, click New to open a new tabbed window.
4. On the Implement menu, click Device Setup.
5. In the Set Hardware Parameters dialog box, select your processor from the

Type drop down menu.
6. The default index and sampling rate should be fine, so click OK to continue.
7. Double-click the tabbed window grid area to open up the Select component

to place dialog box.
8. In the Select Category box, choose Counters/Logic.
9. In the Select Component box, click Counter.

The Counter component implements a simple counting function based on the
Circuit Design Basics

48 RPvdsEx
component’s parameters. Using the default parameter values, it will count up
from 0 to 1000 then reset and continue.

10. Click OK to add the component to the RPvdsEx workspace.
11. Double-click the tabbed window grid area again to open the Select

component to place dialog box.
12. In the Select Category box, choose Helpers.
13. In the Select Component box, click ParWatch. This component displays

the connected signal in RPvdsEx and is commonly used for debugging
circuits.

14. To link the components, double-click the output port of the Counter
component.

The cursor will change from a pointer to a circle with cross hairs. As you
drag the cursor a line will appear.

15. Connect that line to the input port of the ParWatch by moving the cross
hairs over the input port and clicking once.

A line and arrow will appear connecting the two components. This is called
a link. The circuit should look like this:

16. To run the circuit in RPvdsEx, click the Compile, load, and run button
on the Implement toolbar. This compiles the circuit, loads the circuit on the
real-time processor device, and runs the circuit.

You should see the counter signal advance in the ParWatch component. The
counter will continue until the circuit is stopped. Controlling the presentation
of the signal requires additional components.

17. To stop the circuit, click the Halt RP button on the Implement toolbar.

When the file is saved the circuit diagram and the control object are saved
together. The resulting circuit file can be used with run-time applications.

Triggering
TDT’s System 3 Processors support several triggering options. It is important to
understand that the processor is always running a processing chain in normal
operation. Therefore, instead of instructing the processor to ‘play’ the signal, you
would instead trigger a gate to control the circuit output.

Triggering Options

The external, zBus, and software triggers are added to a circuit by adding a TrgIn
component (see “TrgIn” on page 248).
Circuit Design Basics

RPvdsEx 49
External Trigger

Many of the System 3 processor modules provide an external trigger input that can
be triggered by a TTL pulse from an external device. This TRIG input is separate
from other digital input lines (typically found on 25-pin connector inputs).

zBus Triggers

zBus triggers are triggered from software. They are a convenient way to
simultaneously trigger all zBus modules. TDT processors support two zBus triggers, A
and B. They can be set as a pulse, always high or always low. The zBus triggers
can be fired from RPvdsEx or from programs such as OpenEx, BrainWare, PyschRP
or ActiveX controls.

Software Triggers

Software triggers are triggered from software, either by clicking the trigger on the
Trigger menu in RPvdsEx or by issuing a software command that causes the trigger
to fire. SoftTrg is initiated in a single circuit. The processors respond to ten unique
software triggers. Software triggers do not allow precise timing across several modules
because of the delay in sending and receiving information across the PC interface
connection.

Digital Inputs

The RX processors have up to 40 bits of programmable digital I/O. See the
technical specifications for each device for more information. The RP processors have
eight digital inputs on the 25-pin connector. The RM has four or eight digital inputs
on the 9-pin connector. These can be used in a circuit using the BitIn (page 242)
or WordIn (page 249) components.

One Shot

The OneShot (page 164) delivers one TTL signal when the circuit is run on the
processor.

Pulse Train

The PulseTrain (page 165) generates a train of TTL pulses with a specified pulse
duration and inter-pulse interval. It is useful for repeating a stimulus that is triggered
by one external trigger.

Gating a Signal
Gating functions gate the amplitude of the signal on and off with a set rise/fall time
(msec). The rise/fall time is a static parameter and cannot be modified in a circuit.
The gate begins to open when a trigger goes high (=1) and starts to close when
the trigger goes low (=0). A Schmitt trigger can also be used to control the
duration of the signal between opening and closing the gate. Triggering a Schmitt
component sends a pulse out for a set duration. In this example the Schmitt trigger
sends a 100 millisecond pulse to the Cos2Gate when it receives a software trigger
(TrgIn). Triggers are one way users can control components in the processing
chain. The Cos2Gate opens to 90% of the amplitude of the signal in 10 milliseconds
and then starts to close at the end of the Schmitt pulse.
Circuit Design Basics

50 RPvdsEx

Acquiring and Storing the Signal
RPvdsEx uses memory buffers to store signal data for stimulus presentation and data
acquisition.

Memory Buffers: Serial and Ram Buffers
There are two types of buffer components, random access and serial. The random
access component allows users to directly access any value in the buffer; however,
the user has to tell the memory buffer where the data should be or is stored. The
serial buffer automatically increments to the next position while it is acquiring or
presenting signals.

The examples below show how a random access buffer and serial buffer differ. In
these examples the buffers acquire 100 milliseconds of signal. In the serial buffer
example the data is saved as long as the Schmitt trigger that is connected to the
AccEnab line remains high. In the RamBuffer example the Schmitt trigger must first
start a counter to increment the Index on the RamBuf to the next position. Note that
the cycle usage for the serial buffer is smaller.

Serial Buffer

Circuit Design Basics

RPvdsEx 51
Ram Buffer

Block Access

A BlockAcc (block access) component acquires a set number of signal values and
stores them in a serial buffer. The advantage of a BlockAcc is that it automatically
transfers a set number of points to the buffer. This is advantageous if the signal is
to be averaged. In the example below a BlockAcc and an AvgBuf (average buffer)
are used together to acquire a small signal.

The BlockAcc takes the place of the Schmitt Trigger in the example above. When
the block access is triggered it acquires a set number of samples (1000) and then
sends them out to a buffer. The example below demonstrates an averaged buffer.
The average buffer, unlike the serial buffer, adds the incoming signals to the values
in the buffer. A serial buffer or ram buffer would overwrite the old values with the
new values.

The Data Port

All buffers and components that buffer signals, such as filters, have a data port. This
port allows direct access to the memory location. Several components can access the
data port to store, display, or download signals to the PC.

To learn more about using these components with the data port, see “Data Port
Access” on page 27.
Circuit Design Basics

52 RPvdsEx
Signal Processing
Signals, whether acquired or generated, can also be filtered, smoothed, and analyzed
for particular patterns. Two common signal processing techniques, filtering and signal
splitting are illustrated below.

Filtering Gaussian Noise
The GaussNoise (Gaussian noise generator) produces unfiltered broadband noise.
Filter and coefficient generating components can be added to the circuit to produce a
narrow band of noise. In the example below, a Gaussian signal is bandpass filtered
using a Biquad filter component. A ButCoef1 (Butterworth coefficient generator)
generates the values for the necessary biquad filters. Biquad filters are used because
of their stability. Filter properties can be changed in real time.

A single Biquad component filters the Gaussian noise. The ButCoef1 generates
coefficients for a bandpass filter centered around 2000 Hz with a BW of 10 Hz.
This bandwidth puts the 3dB corners at 2005 Hz and 1995 Hz. The output of the
Biquad is then played out of DAC channel 1.

Notes: The filter generated is rather broad. If a narrow band is required, filters can be
connected together to narrow the bandwidth or users can generate their own filter
values for use with our IIR and FIR filters.

To alter the values on the fly connect a parameter tag or Data Table to the Fc and
BW of the ButCoef1.

Signal Detector: Splitting the Signal Path
The System 3 processors allow users to process signals in real-time without any
modification from the PC. This allows users to detect changes in signal levels and
respond in less than a millisecond. In the example below the circuit detects changes
in an incoming signal and lights one of the outputs on an RP (RP2, RA16, or
RL2) module.

In the example below a signal is filtered so that only signals in a particular
frequency are detected.
Circuit Design Basics

RPvdsEx 53
1. Bandpass filter the incoming signal.

2. Detect signals that are at least five times greater than the background RMS

level.

A Hop (Channel 1) is used to simplify the logic of the circuit. The hop allows the
circuit design to be split. The hop does not alter the processing chain it allows the
chain to be easier to follow and debug. A single HopOut can have multiple HopIns
that split the signal.

The split signal goes to two components: the RMS (root mean square) and the
FeatSrch (feature search). When the RMS is calculated it determines the criteria
necessary to activate the FeatSrch. While a signal meets the criteria of the FeatSrch
a logical value is set high (goes from 0 to 1). In this case the Signal must be 5
times the normal noise of the filtered signal for a pulse to be generated. All these
parameters can be easily modified. The logical pulse can be used to light an output
or to start acquisition of the signal or both.

In addition, delays can be added to the circuit so that the acquisition of a signal
includes all of the waveform.

Scale and Add
This circuit implements a simple AM modulator. The signal connected to the channel
one A/D input will be 50% modulated by a 50 Hz sinusoid generated by the Tone
component. The result is played from channel one of the DAC.

Circuit Design Basics

54 RPvdsEx
Note: The circuit using ScaleAdd will run in fewer cycles than the alternate construct shown
below using Mult.

Using Parameter Tags for Software Control
When your circuit is saved as a circuit file it can be used by all TDT application
software and can be incorporated in to custom programs you develop using a
programming language that supports ActiveX.

Parameter tags are pointers that create named access points within your circuit. They
can be used to control parameters and access data while the process chain is
running.

The example below acquires, filters, and stores a multi-channel signal. The HPFreq
and LPFreq parameter tags allow users to control the corner frequency of the
cascaded filters while the dWav parameter tag allows the user to access the stored
data for data visualization and analysis.

There two ParTag components, a right and a left version, allowing you to choose the
tag that will make your circuit easier to read. There is no functional difference
between the two.

Parameter tags can be connected to any parameter input or any output. However,
they cannot be connected directly to a signal input. To use a parameter tag with a
signal input you must first route the signal path through ConstF, ConstL, or ConstI
component.
Circuit Design Basics

55
Hardware	Considerations

Input/Output Delays
When synchronizing processing circuits users should be aware of delays associated
with the I/O of their hardware devices. Users can synchronize I/O using delay
components provided in RPvdsEx. See “Delay Functions” on page 191, for more
information.

The table below provides a comparison of the delays associated with types of I/O
and components.

I/O Type Component Delay Component Icons

Digital Input BitIn
WordIn

2 samples

Digital Output BitOut
WordOut

3 samples

Analog Input AdcIn
MCAdcIn

device
specific*

Analog Output DacOut device
specific*

Inter-DSP zHop
Pairs

zHopOut/In
MCzHopOut/In
MCzHopPick

1 sample

RZ2 Data Pipe MCPipeOut/In 2 samples

*	See	DAC	and	ADC	tables	below.
Hardware Considerations

56 RPvdsEx
DAC and ADC Delays
Several of the System 3 processor modules use Sigma-Delta digital-to-analog and/
or analog-to-digital converters. These converters provide over-sampling that generates
signals up to 90% of the Nyquist frequency (half the sample rate) without the need
for additional anti-imaging and anti-aliasing filters. While these devices provide for
superior conversion quality and extended useful bandwidths, they have an inherent
fixed group delay. When synchronizing the processing circuits with external devices
via triggers, and so forth, one must account for associated delays in the converters
being used.

Note: Information about delays and converter specifications, including amplifier related
delays, can also be found in the technical reference for each device.

Sigma‐Delta Sample Delays

The table below lists the devices that use Sigma-Delta converters along with their
associated delays.

See “Delay Functions” on page 191, for a complete list of components that can be
used to synchronize circuits when needed.

PCM Sample Delays

The table below lists the devices that use PCM converters along with their associated
delays. PCM converters have a much shorter delay and, in general, do NOT
necessitate the use of a delay component.

The Sample Clock and Sampling Rates
TDT’s System 3 processors have a continuously running sample clock. The rate of
this clock can be set to match the bandwidth of the signals you are working with.
For example, studies with humans need a 20 kHz bandwidth, so the sample clock
should be set to 50 kHz. At that rate, TDT devices that use sigma-delta type D/
A's and A/D's can utilize nearly a 25 kHz bandwidth with no anti-aliasing filter.

Device Type SD DAC Delay SD ADC Delay

RZ6 47 samples 66 samples

RX6 47 samples 66 samples

RX8 24 samples 47 samples

RP2.1 30 samples 65 samples

RP2 and RL2 30 samples 40 samples

Device PCM DAC PCM ADC

RZ2 4 samples 3 samples

RZ5 4 samples 3 samples

RX5 4 samples NA

RX7 4 samples NA

RX8 4 samples 3 samples
Hardware Considerations

RPvdsEx 57
Each TDT device has a fixed set of sample rate capabilities. The use of high
performance sigma-delta DACs makes supporting completely arbitrary rates
unreasonable in some devices. For example, the RX8 does not use sigma-delta
DACs so it can offer any rate (derived from 25 MHz) while the RX6 uses sigma-
delta DACs and thus supports a limited set of sample rates.

Note: The RX8 can be configured with sigma-delta converters and/or PCM converters. The
realizable sampling rate depends on which type of converter is used. See the System
3 Manual for more information on selecting an appropriate sampling rate for your
RX8.

The setup dialog in RPvdsEx will always return the true available rate for any device
when the Check Realizable button is clicked.

Converting Sample Rates
Files recorded with other systems (including TDT System II devices) will have
different sample rates. To convert files to System 3 requires changing the sample
rate. Programs like Cool Edit allow you to change the sample rate of a signal. In
addition MATLAB's Signal Processing Toolbox has resampling tools.

Sample Rate Synchronization Issues
Problems with synchronizing waveforms (such as a triangle wave) and with
generating proper delays on two devices are typically a result of differing sample
rates. The device with the higher rate can generate waveforms or delays with more
resolution than the device at a lower rate.

Sample Rate Related Timing Issues
TDT software that offers arbitrary delays always bases the actual delay specified on
the lowest sample rate used. If possible, use standard sample rates that will be
related by a simple factor of two, four, etc. If you are using any of the non-linear
generator components, be aware that only frequencies related to the sample rate by
an integer multiple can be generated.

Components parameters that define a high, low, or delay period based on time are
directly related to the sampling period. There is always a fixed difference between
expected and actual values related to the sample period (inverse of the sample
rate). The maximum possible difference with these components is +/- the sample
period.

When using these components, the actual time value will be the closest interval
depending on the sample rate.

For example, at 100 kHz, a PulseTrain set to go high for 2 ms would be high for
1.9968 ms, because the sample period is 10.24 us.

Because these slight differences are less noticeable on devices using oversampling,
such as those using sigma-delta converters, this issue is most noticeable when
synchronizing several devices using different types of converters.
Hardware Considerations

58 RPvdsEx
The table below shows the possible difference at different sample rates.

The actual length of time the component will remain high is the multiple of the
sample period that is the closest to the set time.

For example, the table below assumes a component, such as a PulseTrain, is set
high for 2 ms. The actual time the component would remain high and the expected
difference are in the final two columns.

Cycle Usage
The main function of the DSP is to execute the processing chain; however, the DSP
must also control or manage each aspect of the processor module. It must control
the converters, move data, and pass instructions to and from the PC across the
zBus/PC interface. On each tick of the sample clock the DSP:

• Executes the processing chain

• Performs “house-keeping” tasks

• Transfers data to and from the host computer across the zBus interface

Again, all of this must happen within one tick of the sample clock. You can imagine
that as the sample clock gets faster, or the processing chain gets more complex, the
DSP has less time to perform all of the necessary functions. At some point the DSP
can no longer keep up, and errors occur. DSP/PC communication suffers and some
components in the processing chain are no longer updated. i.e. when the amount of
processing exceeds the sample period.

In fact, the window for communication with the host PC is entirely dependent on the
time it takes to execute the processing chain. The DSP prioritizes the processing
chain over PC data transfers. Thus, if executing the processing chain takes up 75%

Standard Sample Rate
(Hz)

Actual Sample
Rate (Hz) Sample Period (us) Max difference

(us)

200k 195312.5 5.12 +/- 5.12

100k 97656.25 10.24 +/- 10.24

50k 48828.125 20.48 +/- 20.48

25k 24414.0625 40.96 +/- 40.96

12k 12207.03125 81.92 +/- 81.92

6k 6103.515625 163.84 +/- 163.84

Standard Sample Rate
(Hz)

Max Difference
(us)

Expected High Time for
2ms (ms)

Expected
Difference (us)

200k +/- 5.12 2.00192 1.92

100k +/- 10.24 1.9968 3.20

50k +/-20.48 2.00704 7.04

25k +/-81.92 1.96608 33.92

12k +/- 81.92 1.96608 33.92

6k +/- 163.84 1.95508 33.92
Hardware Considerations

RPvdsEx 59
of a given sample cycle, the DSP has less than 25% of the remaining sample
period to move data across the DSP/PC interface.

Cycle usage is a measure of the DSP workload including DSP housekeeping and
processing chain execution. It is expressed as a percentage of the sample period
consumed by these tasks. If cycle usage is near 100%, no data can be exchanged
with the host PC. Furthermore, when the processing chain exceeds 100% cycle
usage, the execution of the chain breaks down, and errors occur.

Each DSP has a set number of DSP cycles per tick of the sample clock. Cycle
usage is dependent on the sample rate of the system, the processing power of the
RP, and the components used. The lower the sample rate the more complex the
circuit design can be. High sample rates (>50 kHz) will often limit what
components can be used. Very high sample rates (200 kHz or more) may limit a
circuit to only a few components. At higher sample rates, the number of available
DSP cycles is lower and the overhead (running the D/A converters etc.) is greater.
Use only the minimum necessary sample rate for your needs.

The table below shows the relationship between the sample rate and processing
power and lists cycle usage and overhead for each sample rate for the RP2
processor.

Many processors display cycle usage on a front panel LCD or VFD screen or using
indicator lights. A CycUsage (cycle usage) component can also be added to a
circuit to monitor how much processing power the circuit uses. When running a circuit
from the RPvdsEx interface, connecting CycUsage to a ParWatch (parameter watch)
helper component will display the cycle usage of the circuit.

The example below shows how to use a ParWatch to measure the number of cycles
being used by the circuit that is running. In this example the Tone generator and
DAC are using eight percent of the available cycles. Time slices may be used to
reduce cycle usage by running calculations only on certain samples rather than on
every tick of the sample clock.

Sample Rate DSP Cycles
Available (RP2) Overhead (RP2) Total Usage for

Sample Circuit

6K 8192 0.6 % 1.7 %

12K 4096 1.2 % 3.5 %

25K 2048 2.5 % 7.0 %

50K 1024 5.0 % 14 %

100K 512 10 % 28 %

200K 256 20 % 56 %
Hardware Considerations

60 RPvdsEx
Transferring Data between the Processor and PC
Most of the System 3 processors have onboard memory. Single processor devices
with 32MB of memory can store eight million samples of uncompressed data and up
to 32 million samples of compressed data. RPvdsEx has several built-in functions for
using source data from the PC, such as DataTable and SourceFile. Users can also
see the data by using ParWatch (parameter watch) and Graph. More sophisticated
ways of transferring the data to and from the processor module requires the use of
ActiveX controls and some degree of programming.

USB Transfer Rates
USB transfers are limited to 100,000 samples per second of 32-bit data. Streaming
signals to and from disks may be a problem for high sample rate or high channel
number acquisition and presentation. For example, 16-channels of 25 KHz data
produce 400,000 samples of data per second. Data reduction techniques, such as
CompTo16 (Compress to 16) and ShufTo16 (Shuffle to 16), reduce the data size.

Gigabit Transfer Rates
Gigabit transfers are limited to 400,000 samples per second of 32-bit data. Signals
can be streamed to/ from disk without problem unless very high channel numbers
are required. The Gigabit can stream a max of 16-channels of 32-bit data at 25
kHz. Data reduction techniques, such as CompTo16 (Compress to 16) and
ShufTo16 (Shuffle to 16), can be used to reduce the data size.

Optibit Transfer Rates
The Optibit transfer rate is up to 8x times faster than the original Gigabit interface
and also reduces the system’s susceptibility to EMF. Devices are connected in a
simple loop using provided high speed noise immune fiber optic cabling. Also, when
using the Optibit interface, all devices (across all caddies) are automatically phase
locked to a single clock. The Optibit interface supports high channel counts but is
still subject to limitations. Data reduction techniques such as CompTo16 (Compress
to 16) and ShufTo16 (Shuffle to 16) can be used to reduce the data size.

Interface Performance Comparison
The table below illustrates typical transfer rates for each System 3 interface:

Transfer rates are in MB/s. NS: Not supported

Interface Transfer Type RP Devices RX Devices RZ Devices

PO5e/PO5/FO5 Read 1.5 10 20.0

 Write 1.5 2.5 20.0

PI5/FI5 Read 1.5 2.5 NS

 Write 1.5 2.5 NS

UZ2 Read 1.5 2.5 NS

 Write 1.5 2.5 NS
Hardware Considerations

61
Multi‐Channel	Circuit	Design

Overview
In a typical multi-channel application most, if not all, channels will be processed in
the same way. The user can take advantage of this fact by using multi-channel
components and multi-channel macros wherever possible. These components and
macros have been designed specifically for multi-channel processing and are more
efficient than their single channel counterparts. When neither multi-channel
components nor a multi-channel macro is available for a particular processing task,
iterations can be used to simplify the parts of the circuit that must use single
channel components.

When designing multi-channel circuits the user should keep in mind that:

• Simplifying circuit design makes debugging or modifying the circuit easier.

• Using the most efficient components possible improves performance and
ensures that all processing tasks can be accomplished without overtaxing the
processor or exceeding the maximum number of components allowed.

• Using macros reduces the overall number of parameter and configuration set-
tings required while reducing the likelihood of channel number or data type
mismatches.

Note: Multi-channel components can only be used with high performance devices, such as
the RX and RZ devices. Circuits that implement them will not run on single
processor systems, such as the Medusa RA16BA. However, the iteration function can
be used by all devices to streamline circuit design. Macros that use multi-channel
components typically include “MC” in the macro name. See the reference for your
device for specific information on component compatibility.

The Nature of Multi‐Channel Signals
A multi-channel signal is an array of data points arranged according to channels. On
each tick of the sample clock, the multi-channel component processes one point from
each channel.

Working with Multi‐Channel Components
Multi-channel components are a powerful group of components for working with
multi-channel signals. When working with these components the user must carefully
consider the number of channels and type of data in the multi-channel data stream.
Multi-Channel Circuit Design

62 RPvdsEx
Data Types
Most multi-channel components accept any data type as input. No error will be
generated if the signal output from one component is linked to a component input
that requires another data type. Therefore, the user must ensure that data types are
consistent.

nChan Parameter
Multi-channel components can be used to process multi-channel signals from four to
256 channels. Many multi-channel components include a channel number (nChan)
parameter that must be set at design time, to the number of channels in the multi-
channel signal input. Mismatched channel number parameters may cause warnings,
but will not cause errors when the circuit is compiled. Therefore, the user must
ensure that the channel number parameter is set correctly.

Multi‐Channel Circuit Design Strategies
The best circuit design for multi-channel circuits maximizes the use of multi-channel
components and multi-channel macros while minimizing the number of conversions
between multi-channel components and single channel components. This path has
several advantages. Multi-channel components use fewer cycles, and require fewer
components to accomplish processing tasks for multiple channels. Also, multi-channel
components and macros help to keep circuit design cleaner, more manageable, and
easier to debug. Macros help eliminate common multi-channel errors, such as
mismatched data types and mismatched number of channels.

This section provides general guidelines for multi-channel circuit design by taking the
user through the process of building commonly used circuit segments.

Acquisition
Users must consider their hardware configuration when designing an acquisition circuit.

The RZ2 Processor

The RZ2 is equipped with several different analog I/O capabilities. Two types of fiber
optic ports allow a direct connection to Z-Series or Medusa Preamplifiers. The RZ2
also includes onboard A/D for input of signals from a variety of other analog
sources.

The RZ2_Input_MC macro provides a universal solution for analog input via the RZ2,
automatically selecting the correct components, applying any scale factors or channel
offsets, and performing any data type conversion needed based on information the
user provides about the input source. The macro outputs a multi-channel data stream
to facilitate multi-channel signal processing and storage. TDT highly recommends
using the input macro whenever possible.
Multi-Channel Circuit Design

RPvdsEx 63
When the input macro is not used, onboard A/D and Medusa Preamplifier inputs are
accessed using single channel ADCIn components. Single channel data can be
converted to a multi-channel data stream using techniques discussed under
“Combining Channels” on page 66.

The Z-Series amplifier input channels are typically accessed using the Pipe
components (page 264). They can also be accessed using the MCAdcIn component
starting at channel 128; however, this access method is less efficient and not
recommended for high channel count applications.

When the input macro is not used see the RZ2 technical reference in the System 3
Manual for detailed information about the RZ2 I/O hardware for scale factors and
channel numbers.

The RZ5 Processor

The RZ5 is equipped with fiber optic ports for a direct connection to Medusa
Preamplifiers and onboard A/D for input of signals from a variety of other analog
sources.

The RZ5_AmpIn_MC macro provides a solution for multi-channel amplifier input via
the RZ5, automatically selecting the correct components, applying the appropriate
scale factor and channel offsets needed based on information the user provides about
the input source. The macro outputs a multi-channel data stream to facilitate multi-
channel signal processing and storage.

Amplifier inputs and onboard A/D can also be accessed using appropriate single
channel ADCIn components. Single channel data can be converted to a multi-channel
data stream using techniques discussed under “Combining Channels” on page 66.

When the input macro is not used see the RZ5 technical reference in the System 3
Manual for detailed information about the RZ5 I/O hardware for scale factors and
channel numbers.

The RZ5D Processor

The RZ5 is equipped with a fiber optic port for a direct connection to PZ
Preamplifier and onboard A/D for input of signals from a variety of other analog
sources.

Multi-Channel Circuit Design

64 RPvdsEx
The RZ5D_PZ2_Input and RZ5D_PZ3_Input macros provide a solution for multi-
channel amplifier input, automatically selecting the correct components, applying the
appropriate scale factor and channel offsets needed based on information the user
provides about the input source. These macros output a multi-channel data stream to
facilitate multi-channel signal processing and storage. They must be assigned to
DSP-3.

Amplifier inputs and onboard A/D can also be accessed using appropriate single
channel ADCIn components. Single channel data can be converted to a multi-channel
data stream using techniques discussed under “Combining Channels” on page 66.

When the input macro is not used see the RZ5D technical reference in the System
3 Manual for detailed information about the RZ5D I/O hardware for scale factors and
channel numbers.

The RZ6 Processor

The RZ6 is equipped with onboard A/D for superior high frequency acquisition. An
optional fiber optic port can be equipped for a direct connection to a four channel
Medusa Preamplifier.

Important!: The RZ6 device macros are required for accessing analog and digital inputs and
outputs.

Analog input is accessed in RPvdsEx through the RZ6_AudioIn macro.

The RZ6_AmpIn macro automatically applies the necessary scale factors and channel
offsets for configuring the optional preamplifier fiber optic port.

Note: All RZ6 device macros input or output single channel signals, however, the RZ6
supports multi-channel circuit components. See “Combining Channels” on page 66,
for more information on converting single channel signals to a multi-channel signal.

RX Processors

The MCAdcIn component is the best choice to feed the circuit with multi-channel
signals when using RX processors. Signals are typically digitized on a preamplifier
and then transferred to the base station via fiber optics. This basic acquisition circuit
uses the MCAdcIn and a multi-channel filter macro to acquire and filter multi-channel
data.
Multi-Channel Circuit Design

RPvdsEx 65

In this sub-circuit, signals on channels 1 – 16 are acquired and filtered. The FiltSig
HopOut routes the filtered signals to another area of the circuit for further processing
or storage. A similar circuit using single channel components would require 112
components to accomplish this same processing task.

When using the MCAdcIn the user must specify the channels to acquire using the
number of channels (nChan) and the channel offset (ChanOS) parameters. For
example, the circuit above acquires 16 channels. Because the offset is set to 1,
acquisition will begin with channel 1. The user must again consider their hardware
configuration. On the RX5, channels 1-16 are acquired via fiber optic port 1. This
means that a 16-channel preamplifier must be connected to the Amp-A fiber optic
port to acquire all 16 channels of data. A preamplifier connected to the Amp-B port
(Channels 17-32) would be ignored.

To acquire 32 channels from two 16 channels amplifiers that are connected to ports
A and B, simply change each of the nChan parameters to 32. A single MCAdcIn
can be used to acquire any block of consecutive channel numbers. However, if there
is a break in the channel numbers to be acquired, multiple MCAdcIns must be used.
A MCMerge component is used to combine multiple multi-channel signals into one
multi-channel signal.

In this example, two MCAdcIns are used to acquire channels 1-4 and 17- 20. This
circuit acquires eight channels of data using two 4 channel amplifiers, connected to
ports A and B.

The output from MCAdcIn is in floating-point format. The nChan parameter of the
filter macro must match the number of channels in the signal input. In the first
example, 16 channels are fed directly from the MCAdcIn to the macro. In the second
example, a MCMerge component is used to combine the multi-channel signals from
two MCAdcIns and a total of eight channels are fed to the macro.

The filtered signals can be processed further or stored to a memory buffer using
MCSerStore or a multi-channel data store macro. The signal can also be split into
its single channel signals (see “Extracting Channels” below) and processed
individually.

Processing and Converting Signals
The scope of the multi-channel components is limited to the most common
processing tasks. When an acquisition circuit requires additional processing, it will
Multi-Channel Circuit Design

66 RPvdsEx
often be necessary to extract single channel signals using the MCToSing or
MCzHopPick components.

Extracting Channels and Using Iterations

When single channel processing must be performed on many channels, using
iterations keeps the circuit manageable. The iteration box is drawn around a sub-
circuit that must be repeated a specified number of times. The following example
extracts the individual channels from an 8-channel signal called MCSignal, using a
HopIn, full wave rectifies them. All this is done within an iterate box. The single
channels are then recombined using MCFromHop to form an 8-channel signal. The
MCFromHop component is only supported by RX and RZ multi-processor devices.
For single processor devices such as the RA16BA see “Iterate” on page 232.

The iterate box is used to duplicate the sub-circuit 8 times, extracting 8 single
channels from the multi-channel signal. The iterate variable {x} (which corresponds
to the iteration number) is used to set the channel number for the HopIn component
in each iteration ensuring that each iteration extracts a different channel.

The parameter tag also uses the iterate variable {x} to ensure that each iterated
circuit processes a unique channel with a unique set of parameters. The iterative
notation MCSignalR~{x} allows the MCFromHop component to reconstruct the multi-
channel signal MCSignal from the 8 single channels. Once reconstructed, the multi-
channel signal MCSignalR is then stored using MCSerStore.

Combining Channels

There are two components that combine multiple signals paths into a single multi-
channel signal, MCFromSing (ToMC) and MCMerge. MCFromSing (ToMC) is used
to build a multi-channel signal from several single channels.
Multi-Channel Circuit Design

RPvdsEx 67

The MCMerge component merges multi-channel signals into higher order multi-
channel signals. Each of these components combines up to four signal paths. They
can also be used together in sequence to build a larger multi-channel signal.

Data Storage
There are three possible methods for data storage.

OpenEx users can select from a variety of data storage macros designed specifically
for use in OpenEx. These macros greatly simplify circuit design for multi-channel
data storage.

For users who develop their own applications using ActiveX, RPvdsEx currently
supports a limited number of multi-channel buffer operation components.

When no other method is available, use iterate boxes with single-channel buffer
operations (similar to the process described above). See the “Iterate” on
page 232, for an example of this method.

The example circuits below each pull together acquisition, filtering and data storage in
an efficient processing chain.

OpenEx Example

Using OpenEx allows for extensive use of macros for circuit design: from timing to
storage. The circuit below uses the Block_Store_MC macro to store a 16 channel
filtered input to the OpenEx DataTank using the Store name “Blck”.

4 Single Channel
Signals

One 4-Channel Signal

One
16-Channel
Signal

4 Single
Channel
Signals

4 Single
Channel
Signals

4 Single
Channel
Signals

4 Single
Channel
Signals
Multi-Channel Circuit Design

68 RPvdsEx

ActiveX Example

Below, the MCAdcIn feeds the circuit with a 16-channel input. The MCSerStore
component stores all 16 channels into a single 3200 points buffer. The dWav
parameter tag is used to read the buffer back to the PC.
Multi-Channel Circuit Design

69
MultiProcessor	Circuit	Design

Overview
Multi-DSP architectures allow processing tasks to be distributed across several
processors. This reduces the likelihood that the number of RPvdsEx components used
on any one processor will exceed the processor’s maximum (256 for RX processors,
768 for each RZ RZDSP processor, and 1000 for each RZ QZDSP).It also makes
it possible to reduce the cycle usage demand on each processor, enabling each
processor to run at a higher sample rate. Before attempting to design multi-processor
circuits, it is a good idea to become familiar the multi-DSP architecture of your
device.

Assigning DSPs in RPvdsEx
A single RPvdsEx file must contain all the processing tasks for one device. Tasks
can be split across DSPs to reduce individual processor load.

There are two methods available: using sheets or using DspAssign. When using
either method, users should be familiar with the number of DSPs(and cores, if using
a quad-core processor) available in their device and only assign tasks to those
DSP.

Using Sheets
In RPvdsEx the workspace is divided into tabbed sheets. The user can assign each
sheet within the file to one or more processorsor processing core on that device.
The circuit on that sheet will then run on the assigned processor or processing core.
Multiple sheets can be assigned to the same processor or processing core. By
default all sheets are assigned to the first or main processor.

RZ RZDSP Processors

MultiProcessor Circuit Design

70 RPvdsEx
RZ QZDSP Processing Cores

RX Processors

An icon on the sheet tab indicates which processor or core has been assigned, and
if multiple processors or cores have been assigned.

For more information on assigning sheets to processors, see “Assigning DSPs in
RPvdsEx” on page 69.

Using DspAssign
The DspAssign component is specifically designed to designate a section of an
RPvdsEx sheet to run on a processor or core other than the one assigned to that
sheet. Paired with RPvdsEx macros, this component enables many multi-processor
circuits to be displayed in a single sheet.

To use DspAssign, add it to the sheet then drag the borders to encompass the
segment to be assigned to a different processor or core.

In the RX device circuit below, the CoreSweepControl macro runs on the Main DSP.
The remainder of the components on the sheet are assigned by the DspAssign
component to run on DSP Aux-1.

For more information, “DspAssign” on page 263.
MultiProcessor Circuit Design

RPvdsEx 71
MultiProcessor Hop Components
The MultiProcessor Hop components are a special group of RPvdsEx components
used to pass circuit signals between multiple processors. Signals are sent and
received between DSPs via specialized hardware and these components.

• zHopOut moves a single channel signal to the zBus

• zHopIn retrieves a single channel signal from the zBus

• MCzHopOut moves a multi-channel signal to the zBus

• MCzHopIn retrieves a multi-channel signal from the zBus

• MCzHopPick retrieves a multi-channel signal from the zBus and outputs a
single channel

Unlike the single processor HopIn and HopOut, each zHop compiles and is counted
as a component that uses processing cycles. There is a consistent sample delay
associated with these components to ensure known and consistent timing delays
across multiple processors. The delay is one sample when used on an RX device or
two samples when used on an RZ device.

In the example above, a MCzHopOut feeds a 16 channel signal to a spike storage
macro. All timing for the circuit is done on the main DSP processor while filtering
and storage are done by separate (DSP: 1 and DSP: 2) processors. The
DspAssign component splits the tasks while the zHop components make the signals
available across multiple processors.

Using the {d} Variable
The variable d in braces, that is {d}, can be used to represent a number
associated with the processor in any parameter or text label in a circuit. Values for
the main and auxiliary processors of the RX devices are 0, 1, 2, 3 and 4 (max)
respectively. Values for the RZ processors are 0 through 7 (max).

When the circuit is compiled the character d will take the value corresponding to the
processor to which it is assigned. For example, if the channel number parameter for
an AdcIn is set to {d}, and the sheet is assigned to the Aux-1 processor, then the
channel number will be 1.

When a sheet is assigned to more than one processor, the variable can be used to
yield different values for different processors. The {d} variable can also be used with
formulas to yield the desired value.
MultiProcessor Circuit Design

72 RPvdsEx
For example:

A parameter value set to {1 + ((d– 1) * 16)} will take the values:

• 1 in the first auxiliary processor

• 17 in the second auxiliary processor

• 33 in the third auxiliary processor

• 49 in the fourth auxiliary processor

Note: This formula is suitable for the RZ processors and the RX auxiliary processors but
cannot be used on processors with a value of 0 or on quad-core DSPs.

Store Pooling
Store Pooling is a special feature of some data storage macros targeted for TDT’s
OpenEx software suite. When groups of channels from a larger multi-channel signal
are processed and stored using different processors on a multi-processor device,
Store Pooling serves to identify stored data as being part of a large whole.

For example:

If channels 1 – 16 of a 32 channel signal are stored using a data storage macro
on DSP-1

And channels 17 – 32 are stored using a data storage macro on DSP-2

Store Pooling ensures all 32 channels appear to be one “Data Store” in the OpenEx
DataTank.

See the internal macro help of the data saving macros for more information on using
Store Pooling.

Multi‐Processor Circuit Design Strategies
When designing circuits for multiprocessor devices, users should employ strategies
that take advantage of the distributed processing made possible by the multi-DSP
architecture and the MultiProcessor components available in RPvdsEx. These
strategies typically include organizing the circuit into logical units by task and
distributing tasks across processors. For high-channel count applications this might
include distributing data storage across multiple processors.

So, a 64 Channel Spike Sorting circuit might be distributed as follows:

DSP-1: timing and control

DSP-2: process and store 16 channels

DSP-3: process and store next 16 channels

DSP-4: process and store next 16 channels

DSP-5: process and store next 16 channels

When distributing processing tasks across multiple processors, users must
always consider:

• The limitations of each processor.

• The multi-DSP architecture of the device.
MultiProcessor Circuit Design

RPvdsEx 73
Each processor:

• Has a finite amount of processing power dependent on sampling rate.

• Each processor may be assigned up to 256 components for RX processors
and 768 for RZ processors and 1000 for RZ QZDSP processor cards.

The number of components on each processor is reported by RPvdsEx after
compiling the circuit, and the cycle usage of each processor is reported on the front
panel display of the devices.

Device architecture:

RX devices rely on the Main processor to handle all communications. When using an
RX device TDT recommends keeping the processing tasks assigned to the Main
processor light, freeing it up to handle communications and data transfer more
efficiently.

Multi‐Processor Circuit Design ‐ RZ2
The RZ2 processor has a unique architecture that includes a “Pipe Bus” not
available in RX or other RZ devices. It supports simultaneous acquisition on 256
channels at sampling rates up to ~25 kHz and up to ~50 kHz on up to 128
channels.

Multi‐processor Pipe Components
The Multi-Processor components are a special group of RPvdsEx components used
to pass circuit signals between multiple processors on the RZ2. These signals are
shared or passed between DSPs using either the Data Pipe Bus or the zHop Bus.
Pipe components move data most efficiently across the Data Pipe Bus. There is a
consistent two-sample delay associated with these components to ensure known and
consistent timing delays across multiple processors.

• PipeSource feeds up to 256 channels to a DSP’s pipe input, either directly
from a preamplifier, via the optical input port, or from another DSP

• PipeIn retrieves a single channel signal from a DSP’s pipe input

• PipeOut moves a single channel signal to a DSP’s pipe output

• MCPipeIn retrieves a multi-channel signal from a DSP’s pipe input

• MCPipeOut moves a multi-channel signal to a DSP’s pipe output

Typically, all high channel count connections on the RZ2 are made using the Pipe
components. However, the RZ2’s zHop Bus does support up to 126 zHop pairs.

The zHop components were designed to pass arbitrary control and data signals
between DSPs in the RX systems and are more commonly used with RX processors.

See “MultiProcessor Hop Components” on page 71, for more information.

Designing Multi‐processor Circuits for the RZ2
MultiProcessor Circuit Design

74 RPvdsEx
When working with RZ2 devices the user should be aware of the following:

• The RZ2_Input_MC macro is the best method for inputing signals using the
RZ2. Every DSP that uses the pipe bus must have a PipeSource compo-
nent.There is a checkbox in the RZ2_Input_MC macro that inserts this for
you, or you must manually place one in the circuit for that DSP.

• DSPs do not share memory as with RX devices, so circuits that rely on
memory sharing will have to be modified to run on the RZ2 processor.

• While sample rates from 6 kHz to 50 kHz are supported, each fiber con-
nection on the RZ2 can only support 128-channels when sampling at 50
kHz. While sampling at 50 kHz:

• Only the first 128 BioAmp channels will be available per fiber optic port.

• All Data Pipes will have a max of 128 channels instead of 256.

• Both halves (A and B) of the PipeSource component must be selecting
the desired source. For example, when acquiring data from a PZ pre-
amplifier, Pipe[A] and Pipe[B] both need to be set to Amp.
Chan[1..128].

• As with other devices, your expected sustained RZ-to-Host PC data rate
should not exceed 1/2 to 2/3 of the rated data transfer speed. For the
RZ2 device this is 160 Mbits/second (Mbps) so your designs should have
a sustained data rate of no more than ~100 Mbps. This maximum rate may
be further limited by your PC’s ability to store the data to disk.

When working with RQDSP quad-core processors on an RZ device the user
should be aware of the following:

• QZDSP processor cores do not share memory.

• RZ QZDSP processors rely on core-A for communication with the Pipe Bus
and any associated optical port. When accessing the Pipe bus from a
QZDSP, the PipeSource component must be placed on each of the cores,
but only the PipeSource on core-A defines the actual source while the
source in the other PipeSource components is ignored. The PipeSource com-
ponent must be on each core whether it’s using a pipe input, output, or
both.

• Pipe bus output is limited to 256 channels per QZDSP card. Users can split
up groups of channels to assign to different cores, but should not assign
256 channels to more than one core.

Example: RZ2 ‐ 16 Channel Spike Sorting

In the following example, a multi-processor circuit acquires and filters 16 channels of
data acquired using the RZ2 processor and PZn BioAmp. When using the PZn,
signals are carried from the BioAmp across a high speed fiber optic cable to the
RZ2's Optical Port where the I/O interface routes signals to the Pipe Bus. Once on
the Pipe Bus, data is available to all DSPs.

The circuit supports spike sorting and stores sorted spikes and streamed data.

These tasks are split across three processors with multi-processor RPvdsEx
components that efficiently pass the data between DSPs at different stages of
processing. The flow and circuit diagrams below show how the signals are moved
through the processor based on the bus architecture and the circuit design.
MultiProcessor Circuit Design

RPvdsEx 75

Timing and Control

In the diagram above, blue arrows show how some signals are being distributed
across the DSP Block, from DSP-1 to DSP-2 and DSP-3, via the zHop bus. The
CoreSweepControl macro in the diagram below produces core timing and control
signals required in all circuits designed for use with TDT’s OpenEx software. These
signals, such as enable and reset, are used throughout the circuit and are distributed
via zHops (this is handled within the macro and is transparent to the user).
Although the zHop Bus is a less efficient method for handling high channel count
data, it is suitable for this type of data transfer.

Acquisition and Filtering

In the circuit segment above, DSP-1 acquires and filters raw data from a Z-Series
BioAmp across the Pipe Bus. The RZ2_Input_MC macro handles all the tasks
associated with acquiring signals using the RZ2, including making the necessary data
type conversion and applying the correct scale factor for display and analysis.
Because scale and channel offsets vary for different types of RZ2 inputs, the user
must select the type of input within the macro Setup properties.

Macro setup properties...
MultiProcessor Circuit Design

76 RPvdsEx

When needed, an MCPipeIn is automatically included within the RZ2_Input_MC
macro, but the user must select the Include Pipe Declaration check box in the
macro's MC Input Select dialog box to automatically place the PipeSource. The circuit
for each DSP that includes any of the pipe input or output components must also
include one and only one PipeSource component. The PipeSource declaration may be
added internally (automatically by the macro) or externally (manually added outside
of the macro).

Once configured, the RZ2_Input_MC macro feeds the circuit with the first 16 channels
of data. The HP-LP_Filter_MC macro filters all 16 channels through cascaded
highpass and lowpass filters. MCPipeOut makes the filtered multi-channel signal
available to other DSPs via the Pipe Bus.

Storing Streamed Data

On DSP-2, the RZ2_Input Macro is used to feed the processor with data from the
Pipe Bus.

Note: This can also be accomplished using the PipeSource and MCPipeIn components.

In this example, the RZ2_Input Macro is used to configure DSP-2 to pipe in filtered
data from DSP-1 across the Pipe Bus. It routes 16 channels of acquired and filtered
signals to the Stream_Store_MC macro for data storage. Data is then transferred to
the zBus Interface and ultimately to the PC via the zBus Interface bus, as indicated
by the green arrows in the previous flow diagram on page 74. The following diagram
illustrates the DSP-2 configuration.
MultiProcessor Circuit Design

RPvdsEx 77

Spike Sorting and Snippet Storage

On DSP-3, the RZ2_Input Macro again configures the DSP to pipe in data from
DSP-1. It routes 16 channels of acquired and filtered signals to the Spike_Store_MC
macro for spike sorting and data storage. This macro can be set to use one of
several supported sorting methods. Again stored data is transferred to the zBus
Interface and ultimately to the PC via the zBus Interface bus.

This simple circuit acquires, filters, processes and stores 16 channels of data.
MultiProcessor Circuit Design

78 RPvdsEx
MultiProcessor Circuit Design

79
Digital	I/O	Circuit	Design
Digital I/O is extremely useful for producing logical status or control signals. Many
System 3 devices allow digital I/O to be configured through RPvdsEx. To determine
which bytes are available, see the reference section for your device in the System 3
Manual.

Working with BitIn ‐ BitOut
This simple logic circuit using BitIn and BitOut will increment a simple counter for
every sample that bit-0 is a logic high. A DeBounce is used to filter transients from
a switch, such as a button press. A software trigger can be used to reset the
counter to 0. Bit-1 will output a logic high whenever the counter is enabled and
incrementing. This logic high can be output as a control bit or as a status bit such
as an LED. The input logic on the RP2 device is set for logic high (5 Volts in).
For a circuit to work when a button press occurs, invert the output using a NOT
gate component.

Note: Bitmasks always start with bit-0. Use 2n and insert the bit needed to use the
correct mask value. For example, to use bit-3, compute 23 or a mask value of 8.

Working with WordIn ‐ WordOut
This circuit demonstrates the use of WordIn and WordOut and how the mask
parameter is used to assign bits of the input and output ports to different tasks. In
this example, bit-8 of the input port is used to trigger the counter shown. On each
rising edge of bit-8 the counter will be advanced by the value input on bits 0
through 3 of the input port. The resulting count output is fed to all eight bits of the
digital output port. The EdgeDetect component makes sure that only one value is
saved for each logic high present at its input.
Digital I/O Circuit Design

80 RPvdsEx
Addressing Digital Bits In A Word
Some high performance processors include digital I/O that must be addressed as a
word. Word addressable bits can be addressed using the WordOut RPvdsEx
component. To address these bits you must first specify the maximum bitmask value
in the WordOut component for the byte that contains the bits you want to address.
The table below includes a list of the maximum values for each byte. These values
apply to any module with a digital I/O word.

Table	1

Note: Not all devices include all four bytes. To determine which bytes are available, see
the reference section for your device in the System 3 Manual.

Addressing Separate Bits in a Byte
It is possible to address each bit in a byte separately depending on the integer value
sent into or out of the WordIn or WordOut component. The following table shows the
integer values for each bit in each byte.

Table	2

For example:

When addressing Byte C, the bitmask value on the WordOut component should be
16,711,680. Then, to address bit 5 an integer of 2,097,152 should be sent into the
WordOut. Both of these values are required to send a pulse out to only Bit 5 in

Byte Bitmask

A 255

B 65,280

C 16,711,680

D 4,278,190,080

Integer Value (Bitmask)

Byte A B C D

Bit 0 1 256 65,536 16,777,216

Bit 1 2 512 131,072 33,554,432

Bit 2 4 1,024 262,144 67,108,864

Bit 3 8 2,048 524,288 134,217,728

Bit 4 16 4,096 1,048,576 268,435,456

Bit 5 32 8,192 2,097,152 536,870,912

Bit 6 64 16,384 4,194,304 1,073,741,824

Bit 7 128 32,768 8,388,608 2,147,483,648
Digital I/O Circuit Design

RPvdsEx 81

Bit

Bit
Wo

Va
to
Byte C. The following table shows the alignment of the bits to complete the
operation.

Note: This will also light up the Bit 5 LED on the device if the device’s Bits Lights are
configured to Byte C. For more information on configuring Bits Lights, see the
“Digital Input/Output” section for your device in the System 3 Manual.

Addressing More Than One Bit in a Byte
The values in the table above will only address one bit at a time. However, it is
also possible to address a combination of bits. For this task, determine what bits you
would like to address in a specific Byte and then convert that binary value to
decimal. However, before converting this value to decimal, consider the location of
each byte in the digital word. Byte A is converted as normal, but Byte B is shifted
left by 8 bits (add eight 0s to the end of the binary value), Byte C sixteen 0s,
and Byte D twenty-four 0s. The decimal value is the integer to send into the
WordOut component (or the integer coming in from a WordIn component).

For example:

To address all of the bits in Byte B, set the Bitmask value in the WordIn or
WordOut component for Byte B (see Table 1) and then determine the integer value
to be sent into the component (calculated in steps below).

Since we are attempting to address all eight bits of a byte, the binary value should
be eight 1s:

1111 1111

For Byte B, eight 0s should be added to the binary value making the value:

1111 1111 0000 0000

The binary number converted to decimal is:

65,280

Therefore, an integer of 65,280 should be sent to a WordOut component with a
BitMask value of 65280 (this value from Table 1). Another way to complete the
same operation is to add the integer values of the bits you want to address in a
given byte (Table 2) to determine the integer value to send to the WordOut
component.

Addressing More Than One Bit in a Byte using the RPvdsEx iBitShift Component

When addressing bits in a digital word, the integer value out can range from 1 to
2,147,483,648. Since each group is addressable as a single byte, it is often easier
to assign values in a range from 1 - 255 then use an iBitShift to move the integer
by a fixed number of bits to the left or right. When addressing different bytes, you
need only modify the iBitShift “N” parameter.

Byte D Byte C Byte B Byte A Value

 # 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 N/A

mask in
rdOut

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16,711,680

lue Sent
WordOut

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,097,152
(221)
Digital I/O Circuit Design

82 RPvdsEx
For example:

Byte A would use a bit shift of 0, while Byte B would require a bit shift of 8 for
output and –8 for input. Circuits that use Byte C would use 16 and –16 and D
would use 24 or –24. Designing circuits using this method makes it possible to read
in the bit values for Byte D using integers from 1 – 255 as compared to integers
between 16,777,216 and 2,147,483,648. Using iBitShift also allows values to be
processed using ToBits or FromBit.

The following example circuit shows how the iBitShift component can be used with
Word components to remove the eight least significant bits in a 16-bit integer.

As the example (above) explains, the iBitShift is used to remove the eight least
significant bits from the integer 65280. The integer 65280 corresponds to eight high
bits in Byte B. The next example (below) shows an iBitShift that removes the eight
least significant bits from a WordIn component that is bitmasked to Byte B. The
ToBits component then separates the bits and each bit is sent out to the first six
addressable bits.

The ToBits component is only used for up to 6 bits; it may give errors if the 7th
or 8th bits are used.

Note: The first 6 addressable bits must be configured as outputs and Word B must be left
as an input.

This circuit removes the 8 least significant bits.

(1111 1111 0000 0000 to 1111 1111)

The binary equivalent of the integer 65280 is:

1111 1111 0000 0000

The binary equivalent of the integer 255 is:
1111 1111

This circuit sends a digital signal out to the first 6 addressable bits corresponding to the first 6 bits in Word B

Removes last 8 binary values

(1111 1111 0000 0000 to 1111 1111)

In order to read in from Word B use
M=65280 (1111 1111 0000 0000)
Digital I/O Circuit Design

Part	3:	Reference

84 RPvdsEx

85
Macro	Reference
Help for each Macro component is provided in the properties dialog box. For more
information about using macros, see “Macro Reference” on page 85.

Macro Reference List

Timing

Filtering

Macro Name Function Use Notes

CoreSweepControl Generation of the core timing &
control signals used in OpenEx.
This macro should be used once
and only once in each OpenEx
circuit.

Single and multi-processor
devices.

Designed for OpenEx.

StandardTimeControl Generation and storage of the
basic timing/control signals needed
to drive various stimulation or
acquisition structures.

Single and multi-processor
devices.

Designed for OpenEx.

Macro Name Function Use Notes

HP-LP_Filter_1Ch Filtering of floating point single-
channel data streams through
cascaded highpass (HP) and
lowpass (LP) filters.

Single and multi-processor
devices.

HP-LP_Filter_4Ch Filtering for up to four-channels of
floating point data streams through
cascaded highpass (HP) and
lowpass (LP) filters.

Single and multi-processor
devices.

HP-LP_Filter_MC Filtering of floating point multi-
channel data streams through
cascaded highpass (HP) and
lowpass (LP) filters.

Multi-processor devices
only.
Macro Reference

86 RPvdsEx
Data Saving | Segment_Snip

Data Saving | Streaming

Macro Name Function Use Notes

Block_Store_1-4Ch Continuous or decimated block
storage for up to four-channels of
floating point data streams.

Single and multi-processor
devices.

Designed for OpenEx.

Block_Store_1-8Ch Continuous or decimated block
storage for up to eight-channels of
floating point data streams.

Single and multi-processor
devices.

Designed for OpenEx.

Block_Store_MC Continuous or decimated block
storage of multi-channel floating
point data streams.

Multi-processor devices only.

Designed for OpenEx.

Spike_Store_1-4Ch Spike thresholding and sorting for
up to four-channels of floating point
data streams using the FindSpike,
SortSpike, SortSpike2, or
SortSpike3 components, and storage
of the snippets.

Single and multi-processor
devices.

Designed for OpenEx.

Spike_Store_MC Spike thresholding and sorting of
floating point data streams using
the FindSpike, SortSpike,
SortSpike2, or SortSpike3
components, and storage of the
snippets.

Multi-processor devices only.

Designed for OpenEx.

Macro Name Function Use Notes

Stream_Store_1-4Ch Continuous or decimated storage
for up to four-channels of floating
point data streams.

Single and multi-processor
devices.

Designed for OpenEx.

Stream_Store_1-8Ch Continuous or decimated storage
for up to eight-channels of
floating point data streams.

Single and multi-processor
devices.

Designed for OpenEx.

Stream_Store_MC Continuous or decimated storage
of multi-channel floating point data
streams.

Multi-processor devices
only.

Designed for OpenEx.

Stream_Store_MC2 Continuous or decimated storage
of multi-channel floating point data
streams.

Multi-processor devices
only.

Designed for OpenEx.
Macro Reference

RPvdsEx 87
Data Saving | Epoch Store

Data Saving | With Processing | Averaging

Async_Stream_Store_
1-4CH

Asynchronous continuous storage
of floating or fixed point data.

Multi-processor devices
only.

Designed for OpenEx.

Asynch_Stream_Store
_MC

Asynchronous continuous storage
of multi-channel floating or fixed
point data.

Multi-processor devices
only.

Designed for OpenEx.

Macro Name Function Use Notes

Epoc_Store Storage of scalar Epochs on
transitions of control or signal
inputs.

Single and multi-processor
devices.

Designed for OpenEx.

Slow_Store_1-4Ch Triggered storage for up to
four-channels of floating point
or integer data streams.

Single and multi-processor
devices. Designed for OpenEx.

Slow_Store_1-8Ch Triggered storage for up to
eight-channels of floating
point or integer data streams.

Single and multi-processor
devices.

Designed for OpenEx.

Slow_Store_MC Triggered storage of multi-
channel floating point or
integer data streams.

Multi-processor devices only.

Designed for OpenEx.

Epoc_Store_with_Offset Storage of scalar Epochs with
onset and offset coding.

Single and multi-processor
devices.

Designed for OpenEx.

Macro Name Function Use Notes

Block_Avg_Store_1-4Ch Asynchronous block storage of
data streams.

Multi-processor devices
only.

Designed for OpenEx.

Block_Avg_Store_MC Asynchronous block storage of
data streams.

Multi-processor devices
only.

Designed for OpenEx.

Macro Name Function Use Notes
Macro Reference

88 RPvdsEx
Device | PO8e_Streamer

Device | RZ2 Processor

Device | RZ5 Processor

Device | RZ5D Processor

Macro Name Function Use Notes

Stream_Remote_MC Configure RZ to PO8e data
streaming.

RZDSP-U equipped RZs.

Macro Name Function Use Notes

RZ2_Control Configure RZ2 Digital I/O. RZ2 only.

RZ2_Input_MC Configure RZ2 Analog I/O. RZ2 only.

Macro Name Function Use Notes

RZ5_Control Configure RZ5 Digital I/O. RZ5 only.

RZ5_AmpIn_MC Configure RZ5 preamplifier input
(4-32 channels).

RZ5 only.

RZ5_AmpIn Configures a single channel of
RZ5 preamplifier input.

RZ5 only.

Macro Name Function Use Notes

RZ5D_Control Configure RZ5D Digital I/O. RZ5D only.

RZ5D_PZ2_Input Configure RZ5D input from PZ2
preamplifier.

RZ5D only.

RZ5D_PZ3_Input Configure RZ5D input from PZ3
preamplifier.

RZ5D only.

RZ5D_PZ4_Input Configure RZ5D input from PZ4
digital headstage manifolds.

RZ5D only.
Macro Reference

RPvdsEx 89
Device | RZ6 Processor

Device | RS4_Data_Streamer

Device | RV2 Video Processor

Device | PZ2 Bioamp

Macro Name Function Use Notes

RZ6_Control Configure RZ6 Digital I/O
direction.

RZ6 only.

RZ6_AmpIn Reads up to four channels of RZ6
preamplifier input.

RZ6 only.

RZ6_AudioIn Reads two channels of RZ6 ADC
input.

RZ6 only.

RZ6_AudioOut Controls two channels of RZ6
DAC output.

RZ6 only.

Macro Name Function Use Notes

Stream_Server_MC Configure RZ2 to RS4 data
streaming.

RZDSP-S equipped RZs.

Macro Name unction Use Notes

Video_Access Control the RV2 Video Processor via
an RZ processor.

RZDSP-V equipped RZs.

Macro Name Function Use Notes

PZ2_Control Configures PZ2 LEDs and power
down status. Also configures direct
input from PZ2 when run on an
RZDSP-P.

RZ2 or any RZ equipped
with an RZDSP-P.
Macro Reference

90 RPvdsEx
Device | PZ3 Amplifier

Device | PZ5 NeuroDigitizer

Device | Medusa4Z Bioamp

Device | IZ2 Stimulus Isolator

Macro Name Function Use Notes

PZ3_ChanMap Maps channels from PZ3 to build a
multi-channel output containing
either the amplified waveforms or
corresponding impedances.

RZ2 only.

PZ3_Control Configures PZ3 operation modes.
Also configures direct input from
PZ2 when run on an RZDSP-P.

RZ2 or any RZ equipped
with an RZDSP-P.

Macro Name Function Use Notes

PZ5_Control Configures PZ5 logical
amplifiers.

RZ2, RZ5D or any RZ equipped
with an RZDSP-P.

PZ5_512_Control Configures PZ5-512 logical
amplifiers

RZ2, RZ5D or any RZ equipped
with an RZDSP-P.

Macro Name Function Use Notes

Medusa4Z_Input Read 1-4 channels of data from
the Medusa4Z Bioamp.

RZ2, RZ5, RZ6
processors.

Macro Name Function Use Notes

IZ2_Control Control the IZ2 Stimulus Isolator via
an RZ processor. Also control an
SH16-Z connected to an IZ2.

RZDSP-I equipped RZs.
Macro Reference

RPvdsEx 91
Device | MS16 Stimulus Isolator

Device | SH16 Switching Headstage

Device | UDP Ethernet

Signal Generators

Macro Name Function Use Notes

MS16_Control Control the MS16 Stimulus Isolator
via the RZ5 or RX7 processor.

RZ5 or RX7 only.

Macro Name Function Use Notes

SH16_Control Control the SH16 switching
headstage via the RZ5 or RX7
processor.

RZ5 or RX7 only.

Macro Name Function Use Notes

RZ_Serial_Rec Receive serial data input. RZ with UDP only.

RZ_Serial_Send Send data on the serial port. RZ with UDP only.

RZ_UDP_Rec Receive data sent across a network to
an RZ.

RZ with UDP only.

RZ_UDP_Send Send data from RZ across a network. RZ with UDP only.

RZ_BH_Rec_1-4CH Receive data from a BH32 behavioral
controller.

RZ with UDP only.

RZ_BH_Rec_MC Receive multi-channel data from a
BH32 behavioral controller.

RZ with UDP only.

RZ_BH_Send_1-4Ch Send data from RZ to the BH32
behavioral controller.

RZ with UDP only.

RZ_BH_Send_MC Send multi-channel data from RZ to
the BH32 behavioral controller.

RZ with UDP only.

Macro Name Function Use Notes

PulseGenN A biphasic pulse train generator
with all timing specified in
samples.

Single and multi-processor
devices.
Macro Reference

92 RPvdsEx
Misc Calculators

Note: for RX or RZ devices it is more efficient to use PulseGen
component with PulseTrain2.

Test_Spike_MC A multi-channel spike test signal
generator.

Multi-processor devices.

Macro Name Function Use Notes

RateToSamples Convert input rate to number of
samples based on the sample rate
of the circuit.

Single and multi-processor
devices.

TimeToSamples Convert an input time to number of
samples based on the sample rate
of the circuit and bound the output
regardless of the input.

Single and multi-processor
devices.

Macro Name Function Use Notes
Macro Reference

93
Component	Reference

Audio	Processing
The Audio Processing group includes components that are related to 3D audio
processing. This section also includes information about the HRTF file format used by
TDT.

This group includes the following components:

• DistScale

• HrtfCoef

• HrtfFir

• Reverb

HRTF File Format
The following information gives a general
overview of HRTF's and the file format for
using custom HRTF coefficients.

Introduction
An HRTF (Head Related Transfer Function)
contains all the listening cues that are
applied to a sound as it travels through the
environment to arrive at the ear. The signal
at the ear will depend on the azimuth,
elevation and distance of the source relative
to the ears. A complete set of HRTF
consists of many filters that describe a
spherical map of the possible sound sources.
The HRTF contains information about
frequency dependent sound delays and intensity differences between ears. When a
signal is sent through an HRTF filter and then played through headphones the
listener receives the impression of where the sound source should be.

In the illustration each point represents a sound source. The distance of the source
is a constant relative to the center of the head. Sources can change in the lateral
position around the head (Azimuth) or the elevation of the source relative to the
ears. In general, differences in delay and intensity between ears for a given sound
changes greatest in the Azimuthal position and less so for elevation. These
differences are frequency dependent.
Component Reference

94 RPvdsEx
Values can be sent to the RPvdsEx HRTF component coefficient for Azimuth and
Elevation. The HRTF coefficient processor finds the proper coefficients in a look up
table on a Ram Buffer component, interpolates the values and sends them to the
HRTF filter. This produces real-time virtual 3-D audio processing on the RP. Output
of the processor can be feed to the HRTF filter processor. HRTF coefficients are
organized in the following file format for retrieve by the HRTF filters.

The filter coefficients are loaded into a RAM buffer large enough to hold all the
coefficients. The component number of the RAM buffer is stored on the HRTF
coefficient processor. It is possible to have several sets of HRTF coefficients in
different Buffers and switch between them. Information about the organization of the
HRTF is given in the header section. The following format is required for the header.

HRTF Header Format

A 90 degree filter value must be specified for the Maximum_AZ value.

Resolution values are defined as the inverse of the AZ or EL separation.

Definition Data Type Description

Number_of_filters Int32 Number of filter positions in RAM buffer. (number of
Azimuths * Number of elevations)+1.
This is so that the filter position at 90 is included.
In cases where there will be no filter at 90 it is still
necessary to include a dummy filter at 90 degrees.

Number_of_taps_x2 Int32 Number of taps (coefficients) including Interaural
delay (ITD) delay (x2) per filter. e.g. 31 tap filter
=31 x 2 + 2 (delay values)=64

Number_of_taps Int32 Number of taps including the delay. e.g. 31 tap
filter= 31 taps + delay value

Minimum_Az Flt32 Minimum Azimuth value in degrees (e.g. -165)

Maximum_Az Flt32 Maximum Azimuth value in degrees (e.g. 180)

Resolution_Az Flt32 Inverse of the Position separation of Az in degrees,
defined as 1.0/(AZ separation)
e.g. 15 degrees between channel would =0.066666.

Number_of_Az Int32 Number of Az positions at each elevation.

Minimum_El Flt32 Minimum Elevation value in degrees.

Maximum_El Flt32 Maximum Elevation value in degrees (Must include a
value for 90).

Resolution_El Flt32 Inverse of the Position separation of Elevation in
degrees, defined as 1.0/(EL separation).
e.g. 30 degrees between EL would be 1/30=.0333.

Number_of_El Int32 Number of elevation positions for each Azimuth+1.
The additional value is for the filter at 90 degrees.
In cases where there will be no filter at 90 degrees
elevation, a dummy filter must be included.

Sample_Period Flt32 Filter sampling period in microseconds. Calculated as
the inverse of the sampling rate * 1,000,000.
Audio Processing

RPvdsEx 95
HRTF Filter Organization
Filter coefficients are grouped first according to their elevation from maximum elevation
to minimum (e.g. 90, 60,...-60, -90). For each elevation the filters are organized
from maximum AZ to minimum AZ values (e.g. 180, 165,...-165). The table below
gives an example of the filter organization.

Important: Even if there are no values for elevation of 90 degrees a dummy set of filter values
must be included.

HRTF Filter Coefficient Format
The coefficient values for the HRTF must have the following format. They must be
minimum-phase with the left and right channels interleaved. Filter values are stored
as 32-bit floats with the filter's group delay stored as the last element of the filter.
The example below shows the file format for a 31 tap left/right filter pair. The HRTF
FIR filter requires that the order include the delay.

EL AZ

90

60 180

60 165

60 150

60 .
.
.

60 -165

30 180

30 165

30 .
.
.

30 -165

0 180

0 165

0 .
.
.

0 -165

0 -180

.

.

.

.

.

.

-30
Audio Processing

96 RPvdsEx
All Coefficients and delays are 32-bit floating point values. The delays are specified
in number of samples.

The order of the filter must include the number of taps and the delay. A filter order
of 32 has 31 taps and 1 group delay.

The MaxITD value must be greater than the maximum delay specified for any filter
to be used and is fixed at the start of the circuit.

DistScale

Description: Scales signal to model attenuation with distance. The DistCur is limited to the
DistMin and DistMax specified. Then the signal is scaled by DistMin/DistCur.

Ear Filter# Order#

L 1 0

L 2 1

L 3 2

...

L 31 30

Left group delay xx 31

R 1 0

R 2 1

R 3 2

..

R 31 30

Right group delay xx 31

Name Description Data Type

Input Input Floating Point

Output Output scaled as Output*DistMin/
DistCur

Floating Point

DistMax Maximum Distance for attenuation Floating Point

DistMin Minimum distance for attenuation
number

Floating Point
Audio Processing

RPvdsEx 97
HrtfCoef

Description: HrtfCoef obtains coefficients from the memory of CmpNo. Azimuth and Elevation
inputs can be dynamically changed to switch between azimuth and elevation-specific
HRTFs. It will interpolate between sets of coefficients as Azimuth and Elevation are
changed. RPvdsEx comes with a set of HRTFcoef.

For more about custom HRTF filters see “HRTF File Format” on page 93.

Example(s): 3D Circle, page 98.

HrtfFir

Description: FIR filter using HRTF coefficients. Filter coefficients can be obtained by connecting
the HrtfCoef component to the >Coef pointer on HrtfFIR. Custom filter processing can
be done by using the >Coef and >Delay lines.

The Order of the filters is equal to the number of taps (per ear) plus the delay
value (ITD). A 31 tap filter will have a filter order of 32.

The maximum ITD (Interaural Time Delay) is static and must exceed the maximum
value from any of the filters.

DistCur Current distance of the signal Floating Point

Name Description Data Type

Name Description Data Type

Output Filter Coefficients for HRTFFir filter Floating Point

CmpNo Component Number of RAM buffer storing
filter coefficients and look up table

Integer (Static)

AZ AZ of signal source in degrees Floating Point

El Elevation of signal source in degrees Floating Point
Audio Processing

98 RPvdsEx
The RPvdsEx comes with HRTF filters. Information about using custom filters can be
found in “HRTF File Format” on page 93.

Example(s): 3D Circle, page 98.

Reverb

Description: The reverberation component (Reverb) can be used to obtain more realistic
spatialization of 3D sound.

Example: 3D Circle

File: Examples\3D_Sound\3d_circle.rcx

Name Description Data Type

Input Input Floating Point

Output Filtered signal Stereo

Order Number of Taps (per ear) plus one
(delay value)

Integer (Static)

MaxITD Maximum Interaural Delay (no Filter
value should have a greater delay)

Floating Point (Static)

>Coef Pointer to Coef buffer (PM) Ordering:
Ordered as follows:
B0, B1, B2, ... Bn n=order.

Pointer

>delay Pointer to delay buffer (DM).
Ordering: X1(1), X2(1), Y1(1),
Y2(1), X1(1), X2(1), Y1(1),
Y2(1),... X1(n), X2(n), Y1(n),
Y2(n).

Pointer

Name Description Data Type

Input Input Floating Point

Output Reverb component of a stereo signal Floating Point (Stereo
out)

Dmax Maximum delay in msec Static

Dcur Current delay in msec Floating Point

Decay Room decay log scale decline Floating Point

WetMix Reverberation scalar for splitting signal
into stereo

Floating Point
Audio Processing

RPvdsEx 99
Default Device: RP2 Processor

Sampling Rate: 50 kHz

This example implements a basic 3D application. The circuit generates a pulsed
sound and filters it through dynamically changing HRTF filters. The processor is also
controlling the trajectory of the sound. A RampTooth generator is used to produce
the appropriate azimuth values to make the sound circle the head. The pulsed sound
could easily be replaced by audio inputs to the processor.

Note: High-quality headphones should be used to reproduce the 3D spatialization effect.
The 3D sound effect will not be heard over speakers.

Example: FlyBy

File: Examples\3D_Sound\flyby.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

This example shows how to implement a flyby. A short helicopter.wav file is loaded
into the circuit and then run through processing that adjusts sound level, direction,
and Doppler shift based on distance. The DistScale component is used to control
sound level as a function of distance. The LongDynDel component is used to
generate the Doppler shift. The HrtfCoef and HrtfFir components are used to change
the apparent azimuth of the helicopter as it flies by.

Note: High-quality headphones should be used to reproduce the 3D spatialization effect.
The 3D sound effect will not be heard over speakers.
Audio Processing

100 RPvdsEx
Audio Processing

101
Basic	Analysis
Components in the Basic Analysis group analyze various aspects of a signal.

This group includes the following components:

• FeatSrch

• FindFreq

• PowerBand

• RMS

• TrackMax

• TrackMin

This group also includes the following component, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• RMS2

FeatSrch

Description: A feature search looks for a particular set of criteria to be reached. When the
criteria are met the feature search component generates a logical high (1) otherwise
a logical low (0) is generated. Users choose fixed criteria for the search (e.g. the
input is between two values). The condition levels can be changed while the circuit
is running.

The possible feature search codes are:

OFF No search in progress (output is always 0)

ABOVE Checks to see if the input is above K1

BELOW Checks to see if the input is below K1

BETWEEN Checks to see if the input is above K1 and below K2

OUTSIDE Checks to see if the input is below K1 or above K2

RISING Checks to see if the input is rising

FALLING Checks to see if the input is falling

PEAK Checks to see if the input rose and then fell
Basic Analysis

102 RPvdsEx
VALLEY Checks to see if the input fell and then rose

TIP Checks to see if the PEAK or VALLEY event has occurred

RISETHRU Checks to see if the input has risen through K1

FALLTHRU Checks to see if the input has fallen through K1

PASSTHRU Checks to see if the RISETHRU or FALLTHRU event has
occurred

Example: Feature Search

File: Example\FeatSrch.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

This example implements a simple signal detector. It calculates the RMS of the input
and FeatSrch sends a TTL pulse to the BitOut when the RMS goes above 0.38. To
save the signal that comes in, modify the circuit with a Serial Buffer.

Note: Additional circuitry is included in the example file to demonstrate how the example
works.

FindFreq

Name Description Data Type

Input Input Floating Point

Output 1 if conditions met 0 if not Logic

FC Feature search condition Static

K1 First search condition Floating Point

K2 Second search condition Floating Point
Basic Analysis

RPvdsEx 103
Description: FindFreq calculates the frequency of a signal using zero-crossings. Tau is the
number of milliseconds over which the zero-crossing is calculated.

PowerBand

Description: This component computes the power of the input signal within the specified band.
Power is defined as the integral (area under the curve) of that bandwidth. The time
it takes to calculate the PowerBand is inversely related to the bandwidth, i.e. a 1 Hz
band width takes 1 second while a .1 Hz band width takes 10 seconds. To calculate
level, you would take the square root of the output.

Example: Power Band - This circuit builds a THD (Total Harmonic Distortion) measurement
system. The signal applied to A/D channel one is passed through four PowerBand
components. The power measured at the first three distortion components is summed
and converted back to RMS via the SqRoot processor. The fundamental is also
measured and converted to RMS. The two RMS results are then compared via
Divide and converted to a dB ratio with LinTodB. This analyzer can measure THD
ratios down to about 90 dB.

Name Description Data Type

Input Input Floating Point

Output Frequency based on zero-crossings Floating Point

Tau Feature search condition Static

Name Description Data Type

Input Input Floating Point

Output Power of the input signal Floating Point

Fc Frequency to measure Floating Point (Static)

BW 3dB bandwidth to measure Floating Point (Static)
Basic Analysis

104 RPvdsEx
RMS

Description: This component computes the RMS value by squaring the input, lowpass filtering the
input data, and taking the square root.

Note: The RMS component has a built-in time constant (tau) of 1 second.

Equation: Output = RMS (Input)

Example(s): Feature Search, page 101.

RMS2

Description: RMS2 calculates an approximate RMS value of the input signal with a moving
average filter to disregard spurious signals that are in excess of 3X the running
average. The lowest possible output of this component is set by LoLim and the
smoothing average time constant is set by Tau. Reset forces the output to LoLim
and restarts the averaging process. This component has been optimized to improve
cycle usage for multi-channel use and should only be used for neural signals with a

Name Description Data Type

Input Input Floating Point

Output Root Mean Square of Input value Floating Point
Basic Analysis

RPvdsEx 105
Gaussian probability, not sinusoidal signals. The LoLim value should match the
experimental threshold and with each reset, the output will begin deviating from this
value at a rate not greater than 1.3X LoLim per unit of time defined in Tau.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

TrackMax

Description: Tracks the maximum value of an input until the reset is triggered. When reset
(Rst=1), the maximum value is reset to Vi. This function is useful for measuring
peak amplitudes in signals.

TrackMin

Name Description Data Type

Input Input signal Floating Point

Output Output signal Floating Point

Tau Time constant Floating Point

Scale Scale factor Floating point

LoLim Output lower limit Floating point (non-zero)

Rst Reset Logic

Name Description Data Type

Input Input Floating Point

Output Maximum value found from last reset Floating Point

Vi Value at reset, when reset=1 output=Vi Floating Point

Rst Resets output value to Vi Logic
Basic Analysis

106 RPvdsEx
Description: Tracks the minimum value of an input until the reset is triggered. When reset
(Rst=1), the minimum value is reset to Vi. This function is useful for measuring
trough amplitudes in signals.

Name Description Data Type

Input Input Floating Point

Output Minimum value found from last reset Floating Point

Vi Value at reset, when reset=1 output=Vi Floating Point

Rst Resets output value to Vi Logic
Basic Analysis

107
Basic	Math
The Basic Math components are used to perform low-level math operations.
Remember that even simple math operations might use many DSP cycles. For
example, the Divide processor will use about 30 cycles while ScaleAdd uses only
about 10 for both a multiplication and addition. Avoid the Divide, SqRoot, and
Modulus processors whenever possible.

This group includes the following components:

• AbsVal

• Bound

• Ceiling

• Compare

• Divide

• Floor

• Limit

• Min and Max

• Modulus

• ScaleAdd

• Sign

• SqRoot

• Square

• StereoScale

• StereoSum

• Sum and Mult

This group also includes the following components, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCAbsVal

• MCBound

• MCDotProd

• MCMatMult

• MCScale

• MCSign

• MCSum and MCMult

Basic Math

108 RPvdsEx
AbsVal

Description: AbsVal computes the absolute value of the signal.

Equation: Output = Abs (Input)

Example(s): AbsVal (-2.3) = 2.3

AbsVal (2.3) = 2.3

Bound

Description: Bound functions similar to the Limit component but evaluates to Vnan for inputs that
produce a NaN (not a number) error.

Note: NaN is output when a division by 0 is applied to a signal value.

Equation: If Input > Max then Output = Max

Else If Min <= Input <= Max then Output = Input

Else If Input < Min then Output = Min

Else If Input = NaN then Output = Vnan

Name Description Data Type

Input Input Floating Point

Output Absolute value of Input Floating Point

Name Description Data Type

Input Input Floating Point

Output Value no less than Min and no greater
than Max.

Floating Point

Max Maximum output value Floating Point

Min Minimum output value Floating Point

Vnan Value output in the event that input =
Na
N(not a number)

Floating Point
Basic Math

RPvdsEx 109
Ceiling

Description: Ceiling rounds the input to the next highest integer value (returned in floating point
format). If the input is a negative value, Ceiling rounds towards zero.

Equation: Output = Ceiling (Input)

Example(s):

Ceiling (2.3) = 3.0

Ceiling (-2.3) = -2.0

Ceiling (-2.7) = -2.0

Compare

Description: This component uses a specified test to compare the input signal to a specified
value, K. The output reports the result, true or false, as a logical value. The
comparison test can be any of the following: equal to, not equal to, greater than,
less than, greater than or equal to, or less than or equal to. The Compare
component can be thought of as an If... statement. For example, If the signal value
equals K then the output is true (1).

Name Description Data Type

Input Input Floating Point

Output Rounded up value of Input Floating Point

Name Description Data Type

Input Input Floating Point

Output 1 if compare is true, 0 if false Logic

K Test value Floating Point
Basic Math

110 RPvdsEx
Equation: Output = Compare (Input Test K)

Example(s): K = 20; Test = EQ

When Input = 20, Output = 1; otherwise Output = 0

K = 20; Test = GT

When Input > 20, Output = 1; otherwise Output = 0

Divide

Description: This component divides the input signal by the denominator and passes the quotient
to the output. Division by zero results in an error value. The Divide component can
also be used to multiply by defining a Den value between zero and one.

The ScaleAdd and Mult components offer similar functionality and can also be used
to divide. The ScaleAdd is the most efficient of these three components and should,
therefore, be used whenever possible.

Equation: Output = Input / Den (Denominator)

Example(s): PowerBand, page 103.

Biquad Filter, page 205.

Test Comparison types:

EQ: Equal

NE: Not Equal

GT: Greater Than

LT: Less Than

GE: Greater than or Equal to
LE: Less than or Equal to

Static

Name Description Data Type

Name Description Data Type

Input Input Floating Point

Output Input/Den Floating Point

Den Denominator for the divide Floating Point
Basic Math

RPvdsEx 111
Floor

Description: Floor rounds the input to the next lowest integer value (returned in floating point
format). If the input is a negative value Floor rounds away from zero.

Equation: Output = Floor (Input)

Example(s): Floor (2.3) = 2.0

Floor (-2.3) = -3.0

Limit

Description: This component limits the signal to a range defined by the Max and Min parameters.
If the input is greater than Max, the signal out is the Max value. If the input is less
than Min, the signal out is the Min value. If the input is between the Min and Max
values it is passed through as the signal output without change.

Note: If Max is defined as a value less than the defined Min value, the output will always
be the defined Min, regardless of the input value.

Equation: If Input > Max then Output = Max

Else If Min <= Input <= Max then Output = Input

Else If Input < Min then Output = Min

Name Description Data Type

Input Input Floating Point

Output Round down of Input Floating Point

Name Description Data Type

Input Input Floating Point

Output Value no less than Min and no greater
than Max

Floating Point

Max Maximum output value Floating Point

Min Minimum output value Floating Point
Basic Math

112 RPvdsEx
Min

Max

Description: The Max and Min components evaluate multiple input signals and pass the maximum
or minimum input to the output. All inputs signals must come from the primary output
of another component. If it is necessary to route a parameter output to this function
use a ConstF to make it a primary output.

Example(s): Output =Min (Input1I-InputnI), Output =Max (Input1I-InputnI)

Min (4.0, -12.3, 22.7) = -12.3, Max (-3.0, 4, 16.2) = 16.2

MCAbsVal

Description: MCAbsVal computes the absolute value of the multi-channel signal.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: Outputn = Abs (Inputn)

Name Description Data Type

Input (multiple) Input (multiple) Floating Point

Output Min or Max of inputs Floating Point

Name Description Data Type

Input Multi-channel input Floating Point

Output Absolute value of multi-channel Input Floating Point

nChan Number of channels of input/output Integer (Static)
Basic Math

RPvdsEx 113
MCBound

Description: MCBound functions similar to the Limit component but evaluates to Vnan for inputs
that produce a NaN (not a number) error.

Note: NaN is output when a division by 0 is applied to a signal value.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: If Inputn > Max then Outputn = Max

Else If Min <= Inputn <= Max then Outputn = Inputn

Else If Inputn < Min then Outputn = Min

Else If Inputn = NaN then Outputn = Vnan

MCDotProd

Description: MCDotProd computes the dot product of the multi-channel input signal and the vector
data entered on {>K}. The number of elements for {>K} must match nChan (for
example, when nChan is set to 4, {>K} is a 4 x 1 matrix).

Name Description Data Type

Input Multi-channel input Floating Point

Output Multi-channel Output, Value no less
than Min and no greater than Max.

Floating Point

nChan Number of channels of input/output Integer (Static)

Max Maximum output value Floating Point

Min Minimum output value Floating Point

Vnan Value output in the event that input =
NaN

(not a number)

Floating Point
Basic Math

114 RPvdsEx
Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCMatMult

Description: MCMatMult performs matrix multiplication of the multi-channel input signal and the
matrix data entered on >K. The dimensions for >K must match nChan (e.g., when
nChan is set to 4, >K is a 4 x 4 matrix).

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation:

K x A = B

Where, K is the N x N scaling matrix. A is the input N x 1 matrix, one data point
for each of the N input channels and B is the output N x 1 matrix, one data point
for each of the N output channels. N is the total number of channels (nChan).

Name Description Data Type

Input Multi-channel input Floating Point

Output Single-channel output Floating Point

nChan Number of channels of input Integer (Static)

>K Scaling Matrix Pointer

Name Description Data Type

Input Multi-channel input signal Floating Point

Output Multi-channel input signal Floating Point

nChan Number of Channels (4 - 256) Integer (Static)

>K Scaling matrix Pointer
Basic Math

RPvdsEx 115
The operation is computed on every sample based on the current input provided.

B1 = K1,1 * A1 + K1,2 * A2 + K1,3 * A3 + … K1,N * AN

.

.

.

BN = KN,1 * A1 + KN,2 * A2 + KN,3 * A3 + … KN,N * AN

Ordering: The matrix data for K must be loaded as a vector. Matrix row data is concatenated
to form the vector. For example, to load a 4 x 4 identity matrix:

In RPvdsEx, the >K scaling matrix is typically loaded using a DataTable component.
Load the K matrix as a column vector using the nRow Type/Format shown below.
The No. Rows value is equal to N * N (or in this case 4 * 4 =16).

In this diagram, the DataTable K is used to load the identity matrix. The number
pattern from above K = [1000 0100 0010 0001] is listed in the first column.

Note: The DataTable component allows a maximum of 1024 rows. This would correspond
to a 32 x 32 scaling matrix. This means that the maximum number of channels you
can use with this component is 32. If you need to use a larger channel amount, a
SourceFile component or parameter tag can be used to load in a larger scaling
matrix.
Basic Math

116 RPvdsEx
MCScale

Description: MCScale multiplies each signal in a multi-channel input by the value of the SF
parameter. The scaled signals are output as a multi-channel signal. The SF
parameter input can be used to update the scale factor dynamically.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: Output[x] = Input[x] * SF

MCSign

Description: This component determines the sign of the multi-channel input and outputs either -1
(signal with negative value), 0 (signal with no value), or 1 (signal with positive
value).

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Multi-channel signal input Floating Point

Output Multi-channel scaled output Floating Point

nChan Number of channels of input/output Integer (Static)

SF Scale factor Floating Point

Name Description Data Type

Input Multi-channel signal input Floating Point
Basic Math

RPvdsEx 117
Equation: If Inputn < 0.0 then Outputn = -1

Else If Inputn = 0.0 then Outputn = 0

Else If Inputn > 0.0 then Outputn = 1

MCSum

MCMult

Description: These multi-input components perform basic summing and multiplying functions for
two multi-channel inputs.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: Output =(Input1Ch# + Input2Ch#)

Output =(Input1Ch# * Input2Ch#)

Examples:

Output Sign value of multi-channel input: -1,
0, 1

Floating Point

nChan Number of channels of input/output Integer (Static)

Name Description Data Type

Name Description Data Type

Inputs (two) Input Floating Point

NChan Number of Channels Integer (Static)

Output Multiplied or summed value of the
inputs

Floating Point
Basic Math

118 RPvdsEx
This circuit acquires 16 channels of input, and performs digital subtraction of one
channel from all the others. The channel to be subtracted is defined by the
parameter tag named RefChan.

This circuit shows how to scale each channel of an MC input by a different scale
factor.

Note: Use the MCScale component when all signals are to be scaled by the same value.

Modulus

Description: Returns the remainder after the input is divided by the modulus.

Note: Check Known Anomalies for updates on this component.

Equation: Output=Mod (Input)

For example: Input=5, Mod=2: Output = 1. (i.e. 5/2=2 with remainder of 1)

ScaleAdd

Name Description Data Type

Input Input Floating Point

Output Remainder of Input and Modulus Floating Point

Mod Modulus value (to calculate remainder) Floating Point
Basic Math

RPvdsEx 119
Description: ScaleAdd multiplies a signal by the value of the SF parameter and then sums the
result with the Shft value.

Note: the SF and Shft parameters can be set to a constant value or connected to signal
sources. This enables the ScaleAdd function to be used to multiply two signals, add
two signals, or take the product of two signals and sum it to a third.

Using ScaleAdd to sum two signals is preferable to using the multi-input sum
function because it saves DSP cycles.

Equation: Output = (Input * SF) + Shft

Note that Shft can be another signal.

Sign

Description: This component determines the sign of the input and outputs either -1 (signal with
negative value), 0 (signal with no value), or 1 (signal with positive value).

Equation: If Input < 0.0 then Output = -1

Else If Input = 0.0 then Output = 0

Else If Input > 0.0 then Output= 1

SqRoot

Name Description Data Type

Input Input Floating Point

Output Product of input and SF plus shft Floating Point

SF Scale factor (multiply) Floating Point

Shft Add value Floating Point

Name Description Data Type

Input Input Floating Point

Output Sign value of input: -1, 0, 1 Floating Point
Basic Math

120 RPvdsEx
Description: This component computes the mathematical square root operation. The function has a
lower bound of 0.

Equation: Output = Input 1/ 2

Example(s): PowerBand, page 103.

Biquad Filter, page 205.

Square

Description: This component computes the mathematical square operation and passes the result to
the output.

Equation: Output = Input 2

Example:

Smooth, page 216.

StereoScale

Description: Scales a stereo signal. The left and right signals are scaled independently by SFL
and SFR respectively.

Name Description Data Type

Input Input Floating Point

Output Square root of input Floating Point

Name Description Data Type

Input Input Floating Point

Output Square of input Floating Point

Name Description Data Type

Input Stereo signal Floating Point

Output Stereo signal Floating Point

SFL Scale signal right channel Floating Point
Basic Math

RPvdsEx 121
StereoSum

Description: Sums up to five stereo inputs and outputs one stereo signal.

Sum

Mult

Description: These multi-input components perform basic summing and multiplying functions. They
work most efficiently when three or more inputs are used. Unused inputs will be
ignored. All multiple inputs must come from primary outputs. If it is necessary to
route a parameter output to this function, use a CONSTF to convert the signal to a
primary output.

Equation: Output = (Input1I + Input2I + Input3I + ... InputnI)

or

Output = (Input1I * Input2I * Input3I * ... InputnI)

SFR Scale signal right channel Floating Point

Name Description Data Type

Name Description Data Type

Inputs Stereo signal Floating Point

Output Summed stereo signal Floating Point

Name Description Data Type

Input (multiple) Input (multiple) Floating Point

Output Multiplied or summed value of the
inputs

Floating Point
Basic Math

122 RPvdsEx
Example: Sum - This construct implements a typical 'Reverb' circuit. The first three long
delays are summed to simulate early reflections. The 4th delay is added back
recursively to create the reverb chain. Try it out, it sounds like a big reverberant
warehouse.
Basic Math

123
Buffer	Operations
Buffer components are used to create and access data buffers. Data buffers can be
used to store signals, prepare for averaging, or create complex mappings. Most
buffer operations (AvgBuf, SerialBuf, and RamBuf) are associated with some amount
of physical memory that can be accessed by that component. For example, adding a
SerialBuf component to a chain will result in the required amount of SDRAM memory
being allocated and associated with the component. Other components (such as,
ReadBuf and WriteBuf) utilize another component's memory buffer. Because the
RP2-5 does not have any SDRAM, it cannot make use of the buffer operations.

Changing the Buffer Size Dynamically

For some Buffer components size is a dynamic parameter, allowing users to allocate
a variable size to the buffer from an application outside of RPvdsEx. However, when
the RPvdsEx circuit is first run, a memory buffer is allocated based on the size. The
size cannot be increased beyond the allocated memory. So, size can be changed
dynamically, but it can only be decreased.

This group includes the following components:

• AvgBuf

• AvgBuf2

• BlockAcc

• BlockAvg

• RamBuf

• ReadBuf

• SerialBuf

• SerSource

• SerStore

• SnipStore

• TagStore

• WriteBuf

This group also includes the following component, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCSerStore

• MCSerSource
Buffer Operations

124 RPvdsEx
Comparing Buffer Components
This table provides a quick reference summary of the features of the buffer
components.

* The enable lines of some of these components require a high signal for the
duration of acquisition (For example: AccEnable in AvgBuf) and are classified as
Enable lines. In other components, these lines are triggered to start and continue

Buffer Primary Function Artifact
Rejection

Trigger/
Enable
Line*

Access Read/
Write

Buffer
Size^

Index
Generator

Often Used
With ...

AvgBuf Sums the data
input to a buffer

None Enable Serial Write Static Internal BlockAcc

AvgBuf2 Sums the data
input to a buffer

Yes Trigger Serial Write Dyna
mic

N/A N/A

BlockAcc Reads then
writes data of a
fixed block size

Yes Trigger Serial Read
and
Write

Dyna
mic

N/A SerialBuff,
AvgBuf

BlockAvg Sums block
inputs to the
buffer

None Trigger Serial Read
/
Write

Dyna
mic

N/A TagStore

RamBuf Allocates a buffer
and allows read
or write access
to any point in
the buffer

None None Random Read
or
Write

Static External N/A

ReadBuf Reads from
specific indices
in a specified
buffer

None None Random Read N/A External RamBuf,
SerialBuf,
AvgBuf

SerialBuf Performs
sequential
storage of data

None Enable Serial Read
or
Write

Static Internal BlockAcc

SerSource Stores data for
play out

None Enable Serial Read Dyna
mic

Internal OpenEx

SerStore Acquires data for
downloading to a
PC

None Enable Serial Write Dyna
mic

Internal OpenEx

SnipStore Stores a snippet
of data with
specified number
of samples
before and after
the trigger

None Trigger Serial Write Dyna
mic

Internal Tetrode

TagStore Stores data with
tag information

None Enable Serial Write Dyna
mic

Internal BlockAvg

WriteBuf Writes to specific
indices in a
specified buffer

None None Random Write N/A External RamBuf,
SerialBuf,
AvgBuf
Buffer Operations

RPvdsEx 125
acquisition for a fixed number of samples (for example: StEnable in BlocAcc) and
are classified as Triggers.

^ For some Buffer components size is a dynamic parameter, allowing users to
allocate a variable size to the buffer from an application outside of RPvdsEx.
However, when the RPvdsEx circuit is first run, a memory buffer is allocated based
on the size. The size cannot be increased beyond the allocated memory.

So, size can be changed dynamically, but it can only be decreased.

AvgBuf

Description: Implements a summer in memory (to get the average divide by the number of
blocks at the end of acquisition). On each tick of the sample clock, where the
AccEnable is high, a sample will be acquired and summed with the current value at
the current index position in the buffer. The internal index generator is incremented
with each acquisition and loops back to 0 when the total number of samples
specified in the Size parameter have been acquired and summed.

Index reports the value of the internal index generator. NBlks reflects the number of
times the AccEnab input is enabled and disabled and can be thought of as a block
counter (assuming Size equals the block size fed into AvgBuf and AccEnable
remains high for the entire block acquisition then goes from high to low between
blocks). These outputs can be accessed from software or used within the circuit.

AvgBuf is often used with the BlockAcc component, which is enabled with a single
enable pulse at the beginning of the block and then outputs an enable line that
remains high for exactly the specified (BlkSze) number of samples.

Buffer Operations

126 RPvdsEx
Interleaved averaging can be performed by writing blocks that are smaller than the
buffer size allocated. For example, to calculate two interleaved averages of 500
points, use BlockAcc to write 500 point blocks to AvgBuf with size 1000.

Example: Averaged Buffer

File: Examples\AvgBufex1.rcx

Default Device: RP2.1 Processor

Sampling Rate: 50 kHz

This example implements averaging using the AvgBuf component. A zBus trigger
starts a pulse train with 100, 9 ms pulses with a gating time of 2 ms. These
pulses trigger a Cos2Gate to generate 9 ms tones with a 2 ms rise/fall time. The
pulse train is also used to write a block of 500 points (10 ms at ~50 kHz sample
rate) from the ADC input to the AvgBuf component, which sums these points into
its 500 point buffer. A DACDelay is used to synchronize the signal out to the data
acquisition. A graphing function allows the user to see the results of the acquisition.

Name Description Data Type

Input Input Any

Size Size of buffer in words Integer (Static)

Rst Resets the buffer offset (index) to
zero

Logic

AccEnab Enables acquisition (data acquired only
when high)

Logic

>Data Pointer to data buffer Pointer

Index Position of offset in buffer Integer

NBlks Number of times AccEnab is enabled
and disabled

Integer
Buffer Operations

RPvdsEx 127
AvgBuf2

Description: AvgBuf2 sums two alternating signals, acquired on a single input line. AvgBuf2 differs
from AvgBuf in four ways. 1) It sums two signals separately. 2) It allows for
variable buffer size. 3) It allows for artifact rejection. 4) It has an internal block
access feature for acquiring each signal. In addition, AvgBuf2 has two additional
buffers that hold the raw signal before the sums are complete.

When using AvgBuf2, the buffer size (nSize) is defined as the number of samples
to be included for each signal. For example, if nSize = 512 then two buffers of 512
samples each are acquired. The nAvg parameter is used to define the number of
blocks to be acquired and summed for each signal. A trigger starts the acquisition
for each individual buffer.

Two triggers (one for the first buffer and one for the second) are required to
acquire signals for both buffers. When the number of triggers presented to the Trg
input reaches nAvg, the next trigger delivered moves the first sum to the first
average buffer and finally, one last trigger is required to move the second sum to
the second average buffer. The average buffer stores a sum of data blocks. In order
Buffer Operations

128 RPvdsEx
to get their average, the user must divide each sum by the number of good
acquisitions (nGood).

The nGood and nArts outputs provide access to current status for the number of
good acquisitions and artifacts, respectively, for the current average. If artifact
rejection is required, the Art parameter can be linked to a logical input. If Art goes
high for any sample within the acquisition time of the current block, the block will be
rejected. So, for example, if nSize = 100, and the processor is running at 25 kHz,
then Art has to be within 100 * 1/24414 = 4.096 ms from the start of acquisition
of a block.

StCode tells the user which one of the two signals it is currently acquiring. StCode
1 indicates acquisition to the first buffer and StCode 3 indicates acquisition to the
second buffer. StCode 8 indicates the end of the data acquisition for a pair of
average buffers.

Example: Averaged Buffer - The example below acquires and sums 50 blocks into each of
the two buffers on AvgBuf2. The raw data is stored in a separate buffer before it is
moved to the average buffer. Before the raw data is moved it can be deleted using
the artifact rejection line. The values of the stored or average buffer (viewed in
RPvdsEx using >Data) represent the previous summed signal values and not the
values of the block currently being acquired.

Note that the pulse train is set for 102. For each buffer, the Trg must be pulsed
once for each block that is to be summed. Two additional trigger pulses are required
to move the data from each sum buffer to the average buffer. In this case there are
two buffers with 50 blocks each, so [2(50) + 2] pulses are needed to complete
the acquisition and store the summed data.

Name Description Data Type

Input Input Any

nSize Size of buffer in words (“Changing the
Buffer Size Dynamically” on page 123
for an important note on dynamically
changing the size parameter)

Integer

nAvg Number of averages for each signal Integer

Reset Resets the buffer offsets to 0 Logic

Trg Triggers acquisition of a single buffer or
writing sum of buffers to average buffer
(total number of triggers for a pair of
averages is 2N + 2, where N =
nAvg)

Logic

Art Rejects the last two block acquisitions
(one of each signal)

Logic

>Data Memory buffer for the data Pointer

nGood Number of good acquisitions Integer

nArts Number of rejected acquisitions due to
artifacts

Integer

StCode Position in acquisition sequence Integer
Buffer Operations

RPvdsEx 129
BlockAcc

Description: BlockAcc (block access) is designed for use with SerialBuf and AvgBuf to support
block read/write functions. When the enable (StEnab) line is high, the AccEnab
output will go high for BlkSize ticks of the sample clock.

To support block marking, the BlockAcc has a Tag input. The value of the Tag input
will be written as the first element of each buffer block. Also, to support artifact
rejection in averaging, a Skip input is provided to allow buffer average skipping. If
the skip line is made high, the next time StEnab is detected high it will be ignored
and the Nskip output will be incremented by one.

Name Description Data Type

Input Input Any

Output Block data out Any

BlkSze Size of data block in words
(s“Changing the Buffer Size
Dynamically” on page 123 for an
important note on dynamically changing
the size parameter)

Integer

StEnab Sets the enable line of the BlockAcc Logic
Buffer Operations

130 RPvdsEx
Example: Block Access

File: Examples\BlockAccEx.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

The example circuit shown below will save 75 samples from A/D input channel one
each time the software trigger 1 goes high. The EdgeDetect component ensures that
for one cycle of the sample clock, a high is sent to the BlockAcc StEnab input for
each rising software trigger. The 75 samples will be saved to a SerialBuf with room
for 100, 75-element blocks. Each block of data written will include a Tag value
written as its first element. This circuit will write the eight-bit value at the digital
input port as the tag value (the first value of each block).The eight bit value is
read using the WordIn component with bitmask 255. This integer value needs to be
converted to float values to be consistent with the data stored.

BlockAvg

Skip Ignores the next AccEnable high and
skips one tag value

Logic

Tag Tag: Times the Blk access has been
written

Any

AccEnab Starts data transfer to SerialBuff or
AvgBuff

Logic

Nskip Number of times the Tag line is
skipped

Pointer

Name Description Data Type
Buffer Operations

RPvdsEx 131

Description: BlockAvg (block average) was primarily designed for use in OpenEx and TDT
macros. Use the Block_Avg_Store macros for data averaging when possible.

BlockAvg acquires a selectable number of input blocks, summing them as they are
acquired. Input blocks may be scaled before being fed to BlockAvg, to achieve an
average when the specified number of blocks are summed. The accumulated sum is
available on the output port when WrEnab is high. The input and output ports are
equal except when WrEnab goes high, at that time, the sum is available.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Example: Block Average - In the example below, BlockAvg acquires samples of the input
signal each time Trig goes high. Each sample is summed with the accumulated sum
until 100 samples have been acquired (set by the NumAvg parameter). The
accumulated sum is output and WrEnable goes high to clock the data into the
TagStore component with the Time parameter tag. The current sample count is
monitored on AvgCnt and is reset to zero by a logic high on Reset.

Name Description Data Type

Input Input Any

Output Passes input through until WrEnab goes
high at which point the Output equals
the summed data

Any

BlkSze Size of the memory buffer (“Changing
the Buffer Size Dynamically” on
page 123 for an important note on
dynamically changing the size
parameter)

Integer (Dynamic)

NumAvg Sets the number of blocks to be
summed. BlkSze can be changed
dynamically, however, if the new
NumAvg value is less than or equal to
the current AvCnt, the component is
reset

Integer

Trig A low to high pulse acquires a sample
of the input signal

Logic

Reset Resets the block average to the start
point and clears the buffer. Also resets
AvgCnt

Logic

WrEnab Goes high for number of samples equal
to BlkSze when an average is available
and is used to clock the output into a
storage device

Logic

AvgCnt Outputs the current number of blocks
acquired. Automatically resets once
NumAvg is reached

Integer

>Data Pointer to data buffer Pointer
Buffer Operations

132 RPvdsEx

MCSerStore

Description: MCSerStore stores data from a multi-channel signal. The data port (>Data)
provides access to the buffer so that data can be downloaded to the PC.

If WrEnable is high, values from each signal in the multi-channel input are read and
stored in the next nChan buffer positions on each tick of the sample clock. The
index is also incremented to the next nChan buffer positions. This means that data
from all channels is stored in an interleaved fashion. The internal index generator is
incremented until the total number of samples specified in the Size parameter has
been written.
Buffer Operations

RPvdsEx 133
When the index reaches the end of the memory buffer, it automatically wraps back
to zero and continues to increase from there. Any data currently in the buffers will
be written over. Size must be set to the total number of points for all signals in the
multi-channel input (Size = number of points in each signal * nChan). Size is a
dynamic parameter, which allows users to specify the size of the buffer after the
circuit has been loaded to the device.

There are currently no multi-channel versions of other buffer components, such as
SnipStore or AvgBuf. Users who require these special features available with these
components will have to convert the multi-channel signal to single channel.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Multi-channel input Any

nChan Number of channels in input Integer (Static)

Size Size of the memory buffer (“Changing
the Buffer Size Dynamically” on
page 123 for an important note on
dynamically changing the size
parameter)

Integer

Rst Resets the offset (index) of each
buffer

Logic

WrEnab Enables data acquisition and increments
the offset position of the buffers
(WrEnable needs to remain high for
the duration of data acquisition)

Logic

Index Sends out the present buffer position
relative to a starting position of zero

Integer

>Data Pointer to data buffers Pointer
Buffer Operations

134 RPvdsEx
MCSerSource

Description: MCSerSource creates a multi-channel signal. Data can be written to the buffer via
the data port (>Data). IdxBase and IdxStep control which index is being sent out
of the buffer.

IdxBase defines the index into the buffer of the first output channel. The next
nChan-1 values in the buffer are output on the remaining channels. The index is
incremented by IdxStep*nChan on each sample. When the index reaches the end of
the memory buffer, it automatically wraps back to IdxBase and continues from there.
Set IdxStep = 0 and Rst=1 to hold the index constant and equal to IdxBase.

Size must be set to the total number of points for all signals in the multi-channel
input (Size = number of points in each signal * nChan). Size is a dynamic
parameter; the size of the buffer can be set after the circuit has been loaded to the
device.

All channel data is stored in an interleaved fashion.
Buffer Operations

RPvdsEx 135

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

RamBuf

Name Description Data Type

nChan Number of channels in output Integer (Static)

Size Size of the memory buffer (“Changing
the Buffer Size Dynamically” on
page 123 for an important note on
dynamically changing the size
parameter)

Integer

IdxBase Index into the {>Data} buffer that is
played out on channel 1 of the output

Integer

IdxStep Index step size on each sample Integer

Rst Resets the index of the buffer to
IdxBase

Logic

>Data Pointer to data buffers Pointer

CurInd Sends out the present buffer position
relative to a starting position of zero

Logic

NextInd Sends out the next buffer position
relative to a starting position of zero

Integer

Output Multi-channel output Any
Buffer Operations

136 RPvdsEx
Description: Implements a random access memory function. The RamBuf processing component is
used to allocate and optionally access a buffer located in external SDRAM memory.
Buffers can be any size (limited only by the amount of installed memory). When
placed in a processing chain, RamBuf can be used to save data, play arbitrary
waveforms, create complex mappings, or access specific data points in a buffer.

The index parameter controls the currently accessed buffer position. Index can have
any value from 0 to Size-1. However, if the Buffer size is smaller than the index
the index will overshoot the buffer size and the data accessed will be invalid.

The accessed buffer position will automatically be calculated as the modulus (Index/
Size). The Write parameter is set to 0 for reading the index in memory. The Write
parameter is set to 1 to write the current input value to the current index.

The output will always reflect the last value written to the current buffer location. So
even if Write is made true and the current signal input is written to the memory,
RamBuf will first read the old value from this location and use it for output.

In order to read the new value, write has to be 0 for the new value to be written
into the buffer, and then write has to be changed to 1 to read this new value from
that buffer location.

If simultaneous read and write access is needed for the same memory buffer, try
using ReadBuf or WriteBuf in conjunction with RamBuf.

Example: RAM Buffer - In this example we use a RamBuf component to map a frequency
input to a modulator output. The Tone component at [1:1,0] modulates the frequency
of the second Tone at [1:8,0]. The modulator frequency is also scaled and fed into
the index input of the RamBuf allowing for a mapping from frequency to intensity
scaling, which is held in the data table InvXFer. This type of circuit can be used to
normalize a FM sweep for transducer variance across frequency.

Name Description Data Type

Input Input Any

Output Buffer data out Any

Size Size of buffer in words Integer (Static)

Index The position of the accessed data point Integer

Write Enables read(0)or write(1) Logic

>Data Pointer to data buffer Integer
Buffer Operations

RPvdsEx 137

ReadBuf

Description: Gets a value from a specified memory buffer using a specified index. The buffer is
specified by setting the CmpNo parameter to the component number of a RamBuf,
SerialBuf, or AvgBuf component found within the circuit. The component number is
the first number in parenthesis found at the top of each component. The index
number is the position within the buffer and must be set to a number less than or
equal to the block size for the specified buffer.

For example, to read a value from the RamBuf below, the ReadBuf CmpNo
parameter is set to 4.

Important!: Every time the circuit is even slightly modified, the component number of the required
buffer might change. Always check the component number after recompiling. If the
component number has changed update the ReadBuf component's CmpNo parameter,
recompile, and recheck the component number.

Component Number

Name Description Data Type

Output Buffer data out Any

CmpNo Component number of the buffer being
read

Integer (Static)
Buffer Operations

138 RPvdsEx
SerialBuf

Description: The SerialBuf component is a memory buffer manager with a built-in serial index
generator. SerialBuf supports writing or reading, but does not support random access
or simultaneous reading/writing. The Write control selects writing to (high) or
reading from (low) the buffer and AccEnab triggers the read or write function. If
AccEnable is high, the component will access the current index position in the
memory buffer and the internal index generator is incremented. When the index
reaches the total number of samples specified in the Size parameter it is
automatically reset to zero and starts increasing again from there. Any data currently
in the buffer will be written over.

Two outputs report the status of the SerialBuf component. The Index output reports
the value of the internal serial index generator. The nBlks output counts the number
of times the AccEnab input is enabled and disabled. This output can be thought of
as a block counter.

Because SerialBuf requires that the AccEnable line remain high for each sample that
is acquired, it is often used with the BlockAcc component. BlockAcc is enabled with
a single enable pulse at the beginning of the block and then outputs an enable line
that remains high for exactly the specified (BlkSze) number of samples.

Index The position of the accessed data point Integer

Name Description Data Type

Name Description Data Type

Input Input Any

Output Output of serial buffer Any

Size Size of buffer in words Integer (Static)
Buffer Operations

RPvdsEx 139
Example: Serial Buffer

File: Examples\SerialBuffer_ex.rcx

Default Processor: RP2 Processor

Sampling Rate: 50 kHz

This circuit will compute the RMS level of channel one of the A/D input. When
triggered via a zBus trigger, the RMS level will be written to the SerialBuf every 100
ms for 100 values. The EdgeDetect component makes sure that only one value is
saved for each pulse out. The SerialBuf is 1000 points long, so the software trigger
can be issued ten times before the buffer is full.

SerSource

Description: Implements a serial access memory function for playing a signal. When IdxEnab is
set high the SerSource reads a value from the memory buffer, sends out the output,

Rst Resets the buffer offset to zero Logic

AccEnab Enables data acquisition, needs to stay
high for the duration of acquisition

Logic

Write Enables read(0)or write(1) Logic

>Data Pointer to data buffer Pointer

Index Position of offset in buffer Integer

NBlks Number of time AccEnab is enabled
and disabled

Integer

Name Description Data Type
Buffer Operations

140 RPvdsEx
and increments to the next position in the buffer. The internal index generator is
incremented until the total number of samples specified in the Size parameter has
been read. When the index reaches the end of the memory buffer, it is automatically
reset to zero and starts increasing again from there.

SerSource has several advantages over SerialBuf or RamBuf. It uses fewer cycles
because it can only read from a buffer and users have direct control over the buffer
size. Do not use SerSource if you need both record and play or if you need to
move to a particular position in the buffer.

When using SerSource, note that the first value loaded is ready for plays out at
index 0. When the enable line (IndxEnab) goes high with the first trigger, the index
is incremented and the next value is sent to the SerSource signal output line. So,
at index 1 the second value is played out. When SerSource is used to play out a
list of individual values (such as a list of stimulus parameters) the first value sent
to the SerSource might appear to be skipped. A Latch can be used to ensure that
the output and index correspond more accurately to an ordered list of values. See
“Comparing SerSource and SerialBuf Indexing and Output” below for more
information.

Example: SerSource

The example above shows a simple circuit that will play a signal out when a
software trigger is generated. The BufferSize is read to both the SerSource and to
the Schmitt2 trigger (nHi). This ensures that there is no dead time for the signal
out. The buffered signal is played out of the SerSource when the trigger goes high.

Name Description Data Type

Output Output Any

Size Size of the memory buffer (“Changing
the Buffer Size Dynamically” on
page 123 for an important note on
dynamically changing the size
parameter)

Integer (Dynamic)

Rst Resets the signal to the start of the
buffer

Logic

IdxEnab Enables play out and increments the
position of the buffer

Logic

Index Sends out the preset buffer position
relative to a starting position of zero

Integer

>Data Pointer to data buffer Any
Buffer Operations

RPvdsEx 141
Comparing SerSource and SerialBuf Indexing and Output

When a circuit containing the SerSource component is run, the first value is loaded
to the SerSource buffer, even if the enable line (IdxEnab) is low. When the enable
line is triggered, the second value is loaded into the buffer, the index is
incremented, and the second value is played out. This can sometimes give the
appearance that the first value has been skipped, especially when individual values,
such as a list of stimulus values, are being played out rather than a continuous
waveform.

The simple circuit pictured below compares the output of the SerSource to that of the
SerialBuf to demonstrate the differences in indexing and play out between these
common components. In this example, the data in a SourceFile is fed to both the
SerialBuf and SerSource. A simple software trigger is used to enable the buffers.

Circuit is loaded to the hardware...

The values from the SourceFile are not yet ready for play out of either buffer.

Circuit is run... First software trigger...

 Although index is 0, the first
value from the file is already
loaded and ready for play
out of the SerSource.

Although the index is 1, the

SerSource.

second value has been loaded
and played out of the
Buffer Operations

142 RPvdsEx
Second software trigger... Third software trigger...

Using a Latch with SerSource

When using a SerSource, you can avoid the discrepancy between the index and the
value accessed by adding a Latch that is triggered by the same trigger that triggers
the SerSource enable line. This will latch the value loaded during the previous
sample period so that the index and value number will match. In the example below,
the earlier circuit has been modified to include a Latch.

Note: The same software trigger is used for the Latch and the buffer.

Circuit that is loaded to the hardware...

While the index for both
components is 2, the SerSource
plays out the third value.

At index 3, SerSource plays out
the fourth value.
Buffer Operations

RPvdsEx 143
Circuit is run...

Although the first value from the SourceFile is already available for play out, the
output of the Latch is still 0.

First software trigger...

The second value has been loaded, but the output of the Latch is 1, the first value
in the SourceFile.
Buffer Operations

144 RPvdsEx
Second software trigger...

The output of the SerSource is 3 (the third value), but the output of the Latch is
still 2.

Third software trigger...

Here the index is 3 and the Latch output is 3, the third value in the SourceFile.
Buffer Operations

RPvdsEx 145
SerStore

Description: Implements a serial access memory function for storing data. The data port (>Data)
provides access to the buffer so that it can be downloaded to the PC.

On each tick of the sample clock, when WrEnable is high, the SerStore reads a
value from the input, stores it to the buffer, and increments to the next position in
the buffer. The internal index generator is incremented until the total number of
samples specified in the Size parameter have been written. When the index reaches
the end of the memory buffer, it is automatically reset to zero and starts increasing
again from there. Any data currently in the buffer will be written over.

SerStore has several advantages over SerialBuf or RamBuffer. It uses fewer cycles
because it is a write only buffer and users have direct control over the buffer size.
Do not use SerStore if you need to both record and play or if you need to move
to a particular position in the buffer.

Name Description Data Type

Input Input Any

Size Size of the memory buffer (“Changing
the Buffer Size Dynamically” on
page 123 for an important note on
dynamically changing the size
parameter)

Integer (Dynamic)

Rst Resets the offset (index) of the buffer Logic

WrEnab Enables data acquisition and increments
the offset position of the buffer
(WrEnable needs to remain high for
the duration of data acquisition)

Logic

Index Sends out the present buffer position
relative to a starting position of zero

Integer

>Data Pointer to data buffer Any
Buffer Operations

146 RPvdsEx
Note for OpenEx users: When using with a data construct such as OxStream, the
size of SerStore should be an even multiple of the block size of the construct.

Example: SerStore - The example below uses a parameter tag to generate the buffer size of
the SerStore. The parameter tag also determines the duration of the Schmitt2 trigger
(in samples). When a trigger is generated (Soft1) the Schmitt2 Trigger is enabled.
This stores the number of samples specified by BufferSize to the SerStore. When the
acquisition is finished the data can be downloaded to a PC from the >Data port.

SnipStore

Description: The SnipStore component stores multiple snippets of data to a buffer. The SnipStore
was designed for use with the Tetrode component but can be used for any signal
where the values before the trigger are important.

The SnipStore acquires a signal snippet based on the block size, nBlk/2 = X. When
a logical high is detected, the store acquires nBlk/2-1 samples before the start of
the trigger and nBlk/2-1 samples after the trigger. A Tag value is also stored at the
start of each stored snippet. To avoid writing partial snippets, the snippet block size
(nBlk) should always be a multiple of the buffer size (Size). The data port
(>Data) provides access to the buffer so that it can be downloaded to the PC.

When used with a threshold detection circuit, SnipStore stores data with reference to
the point at which a threshold is crossed. As shown in the figure below, it stores
half the total number of points (specified as nBlk/2) before the threshold was
crossed and half after that point.
Buffer Operations

RPvdsEx 147

As a result, the point at which the threshold is crossed will always be centered in
the acquired snippet. However, in many cases the threshold is not at the center of
the signal of interest. For example, the portion of the signal of interest that occurs
after the threshold is crossed may be longer than the portion of the signal that
occurs before threshold is crossed. In these cases, the user must specify a block
size that is larger than the expected length of the signal to ensure that the entire
signal is stored.

Example: See “Tetrode” on page 288, for an example of how the SnipStore can be used.

Name Description Data Type

Input Input Any

Size Size of the memory buffer (“Changing
the Buffer Size Dynamically” on
page 123 for an important note on
dynamically changing the size
parameter)

Integer

nBlk/2 1/2 the size of the acquired signal in
samples

Integer

Rst Resets the signal to the start of the
buffer

Logic

Go Enables the start of the acquisition
block

Logic

Tag Stores a value at the start of the
acquisition that indicates the start of the
sample

Any

Index Sends out the present buffer position
relative to a starting position of zero
(Always a multiple of [(nBlk/2)x2])

Integer

>Data Pointer to data buffer Any
Buffer Operations

148 RPvdsEx
TagStore

Description: TagStore was primarily designed for use in OpenEx and TDT macros. If used outside
the OpenEx environment, be aware that the Tag input’s data type may differ from
the data type of the acquired waveform.

TagStore implements a serial access memory function for storing input data and is
used to mark an acquired waveform with a scalar value such as a timestamp or
other event code. On the first sample that both Enable and Strobe are high, storage
of a block is initiated. TagStore stores the Tag value and the input value
immediately. On each subsequent tick of the sample clock, when Strobe is high, the
TagStore reads a value from the input, stores it to the buffer, and increments to the
next position in the buffer. This continues until a full block of samples (defined by
BlkSize) is stored, and then TagStore becomes ready to store the next block. When
the index reaches the end of the memory buffer, it is automatically reset to zero.
The data port (>Data) provides access to the buffer so it can be downloaded to
the PC.

Data will be stored at the sampling rate of the DSP circuit if the Strobe input is
always high. It can also decimate the incoming signal by providing a pulsed signal
to the Strobe input. The period of the pulse determines how the signal is decimated.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Input Any

Size Size of the memory buffer (“Changing
the Buffer Size Dynamically” on
page 123 for an important note on
dynamically changing the size
parameter)

Must be a multiple of the BlkSize value

Integer (Dynamic)

BlkSize Size of each data block in samples Integer

Enable Enables data acquisition and increments
the offset position of the buffer

When Enable goes low, storage halts
at the end of the block currently being
stored

Logic
Buffer Operations

RPvdsEx 149
Note for OpenEx users: When using a data construct such as OxStream, the size
of TagStore should be an even multiple of the block size of the construct.

Example: In the example below, BlockAvg acquires 200 samples (set by the BlkSze
parameter) of the input signal each time Trig goes high. Each block of 200 samples
is summed with the current memory contents until 100 blocks have been acquired
(set by the NumAvg parameter). The accumulated sum is output and WrEnable
goes high to enable writing the data into the TagStore component with the Time
HopIn component placing a time stamp on the data. AvgCnt outputs the current
sample count and is reset to zero by a logic high on Reset.

WriteBuf

Description: Writes a value to a specified memory buffer using a specified index. The buffer is
specified by setting the CmpNo parameter to the component number of a RamBuf,
SerialBuf, or AvgBuf component found within the circuit. The component number is
the first number in parenthesis found at the top of each component. The index

Strobe Optional additional write enable
Useful for decimation
Data is only written when Strobe is
high

Logic

Rst Resets the Index to zero Logic

Tag Tag to be stored with data (usually a
time stamp)

Any

Index Sends out the present buffer position
relative to a starting position of zero

Integer

>Data Pointer to data buffer Pointer

Name Description Data Type
Buffer Operations

150 RPvdsEx
number is the position within the buffer and must be set to a number less than or
equal to the block size for the specified buffer.

For example, to read a value to the RamBuf below, the WriteBuf CmpNo parameter
is set to 4.

Important!: Every time the circuit is even slightly modified, the component number of the required
buffer might change. Always check the component number (as shown in the figure
below) after recompiling.

If the component number has changed update the WriteBuf component's CmpNo
parameter, recompile, and recheck the component number.

Name Description Data Type

Input Buffer data input Any

CmpNo Component number of the buffer being
written to

Integer (Static)

Index The position of the accessed data point Integer

Component Number
Buffer Operations

151
Coefficient	Generators
The Coefficient Generators components are used to calculate the coefficients of
specified high-pass, low-pass, band-pass, or notch filters in real-time. Their outputs
can be connected to the filter coefficient port of a Biquad filter component.

Note: Coefficient generator components are designed to be used with a single filter
component. Do not use a single coefficient generator component with multiple filter
components.

This group includes the following components:

• ButCoef

• ButCoef1

• CoefLoad

• ParaCoef

ButCoef

Description: This component generates the coefficients for an Nth order Butterworth filter
(highpass or lowpass) having the specified attributes for the Biquad filter. New
coefficient values are generated whenever the enable line (Enab) is high (1).
Setting the enable line to low (0) after the coefficients have been generated
decreases cycle usage. The ButCoef can also be placed in time slice -1 to generate
the coefficients only once. The coefficients will be generated when the processing
chain is run and will remain unchanged during acquisition, further reducing cycle
usage. To generate coefficients for notch or bandpass filters, use ButCoef1.

Note: To satisfy the Nyquist Theorem, the sampling frequency of the system should be
greater than 2 times the highest frequency component passed by the filter.

Name Description Data Type

Output Generated Butterworth coefficients Any
Coefficient Generators

152 RPvdsEx
Tech Note: Clipping (when voltage value is greater than the DAC can handle) will occur when
the Gain of the ButCoef to the input signal produces a voltage value larger than +/
- 10 and is sent to a D/A for play out. Check the output values of the filtered
signal to determine if this is a problem.

Example: Second Order Biquad Filter

File: Examples\ButCoef_ex.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

This example uses a ButCoef to create a second order biquad filter, with a 2000
Hz high-pass, and generates filtered noise. Notice that nBIQ has been set to two
for both the Biquad and ButCoef components.

ButCoef1

Description: This component generates the coefficients for a second order Butterworth filter
(lowpass, bandpass, highpass, or notch) having the specified attributes for the

Gain Scales the filtered portion of the
coefficients, gain is linear

Floating point

Fc Center/corner frequency (min=2 Hz) Floating point

NBiq Number of Biquad coefficients generated
(must match NBiq of filter)

Integer (Static)

Type LP = lowpass, HP = highpass Static

Enab Enables the generation of new
coefficient values

Logic

Name Description Data Type
Coefficient Generators

RPvdsEx 153
Biquad filter. When using a bandpass or notch filter, the BW (bandwidth) parameter
refers to the filter bandwidth at 3dB attenuation (e.g. for Fc = 5 kHz and BW = 1
kHz, the 3dB attenuation would occur at 4.5 kHz and 5.5 kHz). When the filter
type is set to LP (lowpass) or HP (highpass), the BW parameter is redundant
and is ignored.

New coefficient values are generated whenever the enable line (Enab) is high (1).
Setting the enable line to low (0) after the coefficients have been generated
decreases cycle usage. The ButCoef1 can also be placed in time slice -1 to
generate the coefficients only once. The coefficients will be generated when the
processing chain is run and will remain unchanged during acquisition, further reducing
cycle usage.

ButCoef1 allows the user to build only lower order filters. Multiple filters can be
cascaded to make higher order bandpass and notch filters. To generate coefficients
for higher order lowpass and highpass filters users should use ButCoef.

Note: To satisfy the Nyquist Theorem, the sampling frequency of the system should be
greater than 2 times the highest frequency component passed by the filter.

Tech Note: Clipping (when voltage value is greater than the DAC can handle) will occur when
the Gain of the ButCoef1 to the input signal produces a voltage value larger than +/
- 10 and is sent to a D/A for play out. Check the output values of the filtered
signal to determine if this is a problem.

Example: Butterworth Coefficients

File: Examples\ButCoef1_ex.rcx

Default Device: RP2 Processor

Sampling Rate: 25 kHz

This example uses two ButCoef1 generators to filter the signal input. The first
ButCoef1 generates a 50 Hz notch filter and the second generates a 5000 Hz low-
pass filter. The filtered signal is sent to D/A channel one. Note that the number of
Biquads (nBIQ) is one.

Name Description Data Type

Output Generated Butterworth coefficients Any

Gain Scales the filtered portion of the
coefficients, gain is linear

Floating point

Fc Center/corner filter frequency (min=2
Hz)

Floating point

BW Bandwidth at 3dB attenuation Floating point

Type LP = lowpass, BP = bandpass, HP =
highpass, NT = notch

Static

Enab Enables the generation of new
coefficient values

Logic
Coefficient Generators

154 RPvdsEx

CoefLoad

Description: The CoefLoad component is used to quickly load and update component coefficients
at run-time under user control. Uses include updating filter coefficients and channel
mappings. Using this component extends the usefulness of components like FIR2 by
allowing many more blocks of coefficients to be used. These blocks are stored in the
much larger XM memory area and then loaded to the smaller PM memory when
needed.

Because the coefficients are loaded one at a time on each tick of the sample clock,
when a new coefficient set is needed, it will take BlkSize+1 cycles to load (BlkSize
equals the number of coefficients being loaded). This time delay is typically not an
issue. The CoefLoad component has an optional FlipFlop output that can be used to
drive the block select input of the loaded component. The ActCnt output is used to
determine if there are more coefficients to be loaded. If ActCnt > 0, the component
is active and is in the process of loading coefficients.

Coefficient blocks within this component can have any format and any arrangement.
However, this arrangement must match the needed format and arrangement of the
target component. The blocks of coefficients are then simply placed sequentially in
the components XM memory.

Name Description Data Type

Output Selected block of coefficients Any

NumBlks Number of blocks of coefficients Integer (Static)

BlkSize Number of coefficients per block Integer (Static)

BlkSel Index to the block of coefficients to be
used

Integer
Coefficient Generators

RPvdsEx 155
Example: Load Coefficients

For setting arbitrary channel mappings using the MCMap component:

This circuit supports four channel mappings on the 16 channel input signal. The
MapLoad tag must be loaded with the channel mappings before the MapSelect
parameter is set. In this case, the loaded values would be 32 bit integers arranged
in four blocks of 16 values each.

Note: EnabFF = No for this application.

To dynamically update the coefficients of a filter:

This circuit supports the loading of 4 different sets of coefficients into the FIR2 filter
component. Each block contains 32 filter taps arranged as specified by the FIR2
component description. Every 5000 ticks of the sample clock, the PulseTrain2 will
advance the SimpCount counter causing the next filter set to be loaded and selected
(via the FlipFlop control). It is important that the SimpCount output does not exceed
NumBlks and that the nPer argument in PulseTrain2 is not set less than BlkSize+1.

EnableFF Enables optional flip flop output Logic

>CoefBlks Pointer to CoefBlks buffer (PM) Pointer

FlipFlop Optional output to drive the block select
input of the loaded component

Integer

ActCnt Output used to determine the state of
the component

Integer

Name Description Data Type
Coefficient Generators

156 RPvdsEx
ParaCoef

Description: This component generates the parametric coefficients for a second order equalizing
Biquad filter. Center frequency (Fc) and bandwidth at 3 dB (BW) are specified by
the user and the band gain increases the intensity of the signal within the band by
the linear scale factor (gain) specified. The gain value should be set carefully to
ensure that the amplified signal will not exceed the dynamic range (typically +/- 10
V) of the processor module. When a unity gain (Gain = 1) is specified, coefficient
for an all pass filter are generated.

The table below lists typical roll-offs from the center frequency for several gain
settings.

New coefficient values are generated whenever the enable line (Enab) is high (1).
Setting the enable line to low (0) after the coefficients have been generated
decreases cycle usage. The ParaCoef can also be placed in time slice -1 to
generate the coefficients only once. The coefficients will be generated when the
processing chain is run and will remain unchanged during acquisition, further reducing
cycle usage.

Note: To satisfy the Nyquist Theorem, the sampling frequency of the system should be
greater than 2 times the highest frequency component passed by the filter.

Center Frequency Bandwidth Gain Roll-Off

10 kHz 100 Hz 10 18 dB/octave

10 kHz 1000 Hz 10 15 dB/octave

10 kHz 100 Hz 20 24 dB/octave

10 kHz 1000 Hz 20 15 dB/octave

Name Description Data Type

Output Generated parametric coefficients Any

Gain Band gain of filtered signal (linear
scale factor)

Floating point

Fc Center frequency Floating Point

BW Bandwidth at 3dB attenuation Floating point

Enab Enables the generation of new
coefficient values

Logic
Coefficient Generators

RPvdsEx 157
Tech Note: Clipping (when voltage value is greater than the DAC can handle) will occur when
the Gain of the ParaCoef to the input signal produces a voltage value larger than
+/- 10 and is sent to a D/A for play out. Check the output values of the filtered
signal to determine if this is a problem.

Example: Parametric Coefficient

File: Examples\ParaCoef_ex.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

This example uses the ParaCoef generator with a Biquad to filter a band of noise
100 Hz wide centered at 1000 Hz. The gain is set to 10 dB to increase the output
level of the filter. Parametric filters act like equalizers on an amplifier.

Coefficient Generators

158 RPvdsEx
Coefficient Generators

159
Counters	and	Logic
The Counters and Logic components are used primarily for program control. They
often control the activity of individual components via trigger or enable inputs.

This group includes the following components:

• And

• AndOr

• Counter

• DeBounce

• EdgeDetect

• JKFlipFlop

• Not

• OneShot

• Or

• PulseTrain

• PulseTrain2

• PulseTrain3

• RSFlipFlop

• Schmitt

• Schmitt2

• TTLDelay

• TTLDelay2

• Xor

And

Counters and Logic

160 RPvdsEx
Description: Logical AND function. Returns 1 (true) if all inputs are 1 (true). All multiple inputs
must be from a primary output. If it is necessary to route a parameter output to this
function use a CONSTL to make it a primary output.

Equation: Output = AND (Input1I, Input2I, Input3I, ... InputnI)

Example(s): AND (0, 0, 0, 1, 0) = 0 (false)

AND (1, 1, 1, 1, 1) = 1 (true)

AndOr

Description: Logical AND/OR function. Returns 1 (true) if input and AndIn parameter are 1
(true), or if OrIn parameter is 1 (true). If it is necessary to route a parameter
output to this function use a CONSTL to make it a primary output.

Equation: Output = (Input AND AndIn) OR OrIn

Example(s): On each tick of the sample clock the following truth-table applies:

Name Description Data Type

Input (multiple) Input (multiple) Logic

Output AND operation of data set Logic

Name Description Data Type

Output Output Logic

Input Input Logic

AndIn Parameter input ANDed with Input Logic

OrIn Parameter input ORed with Input Logic

Input AndIn OrIn Output

H H H H

H H L H

H L H H

H L L L

L H H H

L H L L

L L H H

L L L L
Counters and Logic

RPvdsEx 161
Counter

Description: The Counter is a count up/down counter. It counts for as long as a high pulse is
going to the enable port (Enab). It increments the count by a set value
(determined by Step) for each pulse of sample clock (e.g. if the enable is high
for 1 msec and the sample rate is 25 kHz then the counter will step 25 times).
Once it exceeds the sum of the Base and Roll value the Counter starts counting
again at the base value (Base) (see below for more details). The first time the
counter is started or after the Reset (Rst) port has been triggered (value goes
from low (0) to high (1)) the Counter starts at the Base value plus the Phase
(Phse) value.

The example below shows many of the features of the Counter.

Example parameter settings are: Base = 8, Phse = 11, Step = 2, Roll = 20.

The Counter sequence begins at the Phse value when the circuit is first run: the
initial count value output is therefore 11.

The count value on progressive samples would be incremented by Step = 2:

13, 15, 17, 19, 21, 23, 25, 27

The Roll and Base values determine the value at which the counter rolls over.

Since Base = 8 and Roll = 20, the counter will roll over when its count value is
incremented to a value greater than or equal to 28 (8 + 20). During a rollover,
the remainder of the Step value is carried over.

Name Description Data Type

Output Incremented integer value Integer

Base Base value Integer

Phase On reset the starting value of the
Counter

Integer

Step Increment value Integer

Roll Roll over value Integer

Rst Resets counter when logic is high Logic

Enab When enable line is set high(1)
counter is incremented on each tick of
the clock

Logic
Counters and Logic

162 RPvdsEx
Recall that our last counter value output was 27. As the counter increments this
value to 29 there is a remainder of 1 prior to the rollover (29 - 28). This
remainder is added to the Base value and output on the following sample.

Since Base = 8 the new counter value output will be 9 (8 + 1).

The counter will then be incremented by Step for each progressive sample until the
rollover value is encountered. The sequence will repeat as long as Enab is high and
Rst is not triggered.

Tech Notes: The Counter is incremented for each tick of the sample clock.

Phse only functions when the Enab first goes high or after Rst is triggered. As long
as Rst is high (1) the count value remains at the Base + Phse.

All Components of the Counter are available while the RP2 chain is running.

To use the Counter as a Count down circuit the Base value must be less than the
roll value. When the Counter reaches the Base value it Rolls over to the Roll value
and repeats the count down.

The Counter does work properly when Rst is less than zero.

The Base value can be negative only if Roll and Step are positive values.

Example: WordIn-WordOut, page 79.

DeBounce

Description: A DeBounce filters out transient changes in input. The output of the signal is tied to
the input. When the input changes and remains constant for a set number of
samples the output switches. If the input switches state during the sampling period
the output does not change.

Name Description Data Type

Input Input Logic

Output Output Logic

nChks Number of samples that input must
remain constant before state changes.
Clock times will differ depending on
sampling rate.

Integer
Counters and Logic

RPvdsEx 163
EdgeDetect

Description: This component returns true for one cycle of the sample clock when the specified
edge (rising or falling) is encountered. It is useful for converting a TTL to a single
sample high. The edge direction cannot be changed once the processing chain is
started.

Edge = Rising or Falling (goes high either on rising or falling edge (static))

Example(s): Block Access (example with trigger), page 129.

Serial Buffer (example with PulseTrain), page 138.

JKFlipFlop

Description: Implements a standard J-K flip-flop. See truth table below.

Name Description Data Type

Input Input Logic

Output Output goes high for one cycle on
either rising or falling edge

Logic

Edge Rising or falling edge detect Static

Name Description Data Type

Output Output Logic

J J input Logic

K K input Logic

Rst Resets state of the FlipFlop to 0. Logic
Counters and Logic

164 RPvdsEx
Equation: On each tick of the sample clock the following truth-table applies:

Not

Description: Inverts signal logic, i.e. changes 0's to 1's and 1's to 0's.

Equation: Output = NOT (Input)

OneShot

Description: Generates a single TTL output when chain is first run.

Equation: Output = 1

Rst J K Output

H X X L

L L L unchanged

L L H L

L H L H

L H H Toggle

Name Description Data Type

Input Input Logic

Output Output (Inverted value of Input) Logic

Name Description Data Type

Output TTL pulse when chain is started Logic
Counters and Logic

RPvdsEx 165
Or

Description: Logical OR function. Returns 1 (true) if any input is 1 (true). All multiple inputs
must be from a primary output. If it is necessary to route a parameter output to this
function use a CONSTL to make it a primary output.

Equation: Output = OR (InputI, InputI, InputI, ... InputnI)

Example(s): OR (0, 0, 0, 0, 0) = 0 (false)

OR (0, 0, 0, 1, 0) = 1 (true)

OR (1, 1, 1, 1, 1) = 1 (true)

PulseTrain

Description: This component generates a pulse train, i.e. a series of pulses with specified times
for a high (1) and low pulse (0)).

Name Description Data Type

Input (multiple) Input (multiple) Logic

Output OR operation of inputs Logic

Name Description Data Type

Output Pulse value (0 or 1) Logic

Thi Time stimulus is high in milliseconds Floating Point

Tg Gate time: signal high time is (Thi-
Tg) and is low for Tlo; use with
Cos2gate and Lin2gate (milliseconds)

Floating Point
Counters and Logic

166 RPvdsEx
When externally triggered (via Trg) with a low (0) to high (1) pulse, the rising
edge of trg, the PulseTrain component sends out a number of pulses (Npls
(positive integer)). Each pulse will go high for a set time (Thi Time High (in
milliseconds)). The pulse then goes low for a set time (Tlo Time Low (in
milliseconds)). After all pulses have been sent PulseTrain waits for another Trigger
(Trg).

The signal output will be high for the (Thi-Tg) milliseconds and then low for Tlo
milliseconds. The Tg parameter can be used when the PulseTrain is driving a signal
gate.

Two parameters (Stage and CurN) are used to determine the status of PulseTrain.
Stage determines if PulseTrain is waiting for a Trigger (Stage=0), is sending a high
pulse (Stage =1) or a low pulse (Stage=2). Current Number (CurN) determines
how many pulses remain.

For example the values in the picture above would generate the following response:
On a trigger from low to high (Trg) the pulse train would send out 5 pulses each
with a 99.75 msec high (100 (Thi)-0.25(Tg)) and a 100 msec low (Tlo).

Tech Notes: Pulse Train responses to the rising edge of a trg.

Setting Npls = 0 produces a continuous series of pulses. When Npls = 0 CurN
counts down from 0 (produces negative values).

A Schmitt Trigger performs a similar operation, but differs in a variety of ways such
as it has 1) no gate time, 2)a single pulse,3) detects high state rather than rising
edge.

All components of a PulseTrain can be accessed while the RP2 chain is running.

The PulseTrain ALWAYS is triggered by going from low to high regardless of the Trg
value.

Pulse minimum Thi is two ticks of the sample clock. This is true even when Thi =
0

Minimum for Tlo = 0

Example: Averaged Buffer (generating a pulse train to trigger a signal), page 125.

Tlo Time stimulus is low in milliseconds Floating Point

Npls The number of pulses to generate Integer

Trg Starts pulse generator Logic

Stage Stage in pulse cycle; 0 = waiting for
trigger, 1 = Output high, 2 = Output
low

Integer

CuN Current number of pulses left (Counts
down from Npls to 1 then resets.);
when Npls is 0 (continuous) CuN is
negative

Integer

Name Description Data Type
Counters and Logic

RPvdsEx 167
PulseTrain2

Description: PulseTrain2 sends out a TTL pulse (one cycle) every nSamples (nPer). The
number of pulses generated is set with nPulse. While the Enab line is high (1) the
PulseTrain2 counts up to the number of pulses. When the Enab line goes low the
PulseTrain2 is locked at the last nPulse, unless Rst is triggered. Rst resets the
number of pulses generated (Pcount) to zero.

Tech Notes: Rst resets the counter even while the system is enabled.

If the Enab line and the Rst line are set high, PulseTrain2 still generates TTL
pulses.

The nPer (number of samples between pulses) and the nPulses (number of
pulses) can be changed while the PulseTrain2 is enabled. However, this can cause
problems if the nPulses is less than the number of pulses generated.

Setting nPulse to -1 generates a continuous number of pulses.

Example: PulseTrain2 - In this example a TTL pulse is generated every 5000 samples. Each
time a pulse is generated the RMS signal from A/D channel 1 is stored into a
memory buffer. To start and stop the acquisition a zBUS trigger is generated. The
zBUS trigger is used because it can be set always high or low, unlike the software
triggers that stay high for a single pulse.

Name Description Data Type

Out Signal output (single TTL pulse) Logic

nPer Number of samples between TTL
pulses

Integer

nPulse Number of pulses generated while Enab
line is high

Integer

Enab While Enab is high TTL pulses are
generated

Logic

Rst When reset the number of pulses
generated is set to zero

Logic

PLate Sends out a TTL pulse n-2 samples
after signal out

Logic

PCount Counts the number of pulses generated Integer
Counters and Logic

168 RPvdsEx

PulseTrain3

Description: In contrast to PulseTrain2(see above), PulseTrain3 latches the input parameters
when Rst is triggered. This allows you to adjust the nPer parameter on the fly for
the next stimulation period without interrupting the current stimulus.

By default the output will not start when the circuit starts, it is waiting for the Rst
input to be triggered at least once. For continuous trains, you can use the OneShot
component to trigger it at the start of the circuit.

RSFlipFlop

Counters and Logic

RPvdsEx 169
Description: Simple set/reset flip flop similar to an on/off light switch. Set turns on the switch
(makes it high) when triggered by a high pulse. Rst turns the switch off when it
is triggered by a high pulse. If both Set and Rst are 0 then the output is not
altered (switch either stays On or Off).

Equation: Output = 0 when Rst = 1

Output = Output(t-1) when Set=0 and Rst = 0

Output = 1 when Rst = 0 and Set = 1

Schmitt

Description: This component performs a Schmitt trigger. If a logical high is detected, the output
goes to a high state for a set amount of time (determined by Thi). At the end of
the high time, the output goes to a low state for a set time (determined by Tlo).
Once that time has expired, the Schmitt can be triggered again.

Tech Notes: If the input to the Schmitt trigger is high(1) at the end of the cycle (Thi+Tlo) a
new pulse is sent out. This is in contrast to PulseTrain that responds only to a
rising edge of a trigger.

By setting Tlo to zero the Schmitt trigger is immediately ready for another trigger
event.

The minimum time high (Thi) is two ticks of the sample clock.

It has a lower cycle usage compared to a PulseTrain.

Name Description Data Type

Output Output Logic

Set Set value Logic

Rst Resets state of the RSFlipFlop to 0 Logic

Name Description Data Type

Input Input Logic

Output Logical value (0 or 1). Logic

Thi Output high time (in milliseconds)
after trigger

Floating Point

Tlo Output low time (in milliseconds) after
high

Floating Point
Counters and Logic

170 RPvdsEx
Equation: If (InputI) then

From t=0 to Thii OutputO=1

From t=(Thi1+1) to Tlo2 OutputO=0

Schmitt2

Description: This component performs a Schmitt trigger. If a logical high is detected, the output
goes to a high state for a set number of samples (determined by nHi). Once that
time has expired, the Schmitt2 component can be triggered again.

Tech Notes: The Schmitt2 trigger is excellent for storing a set number of samples to a buffer.

Equation: If (InputI) then

From s=0 to nHi if nEnab=1 OutputO=1

else OutputO=0

Example: Schmitt2 - Acquire 100 samples of a signal.

Name Description Data Type

Input Input logic high to start trigger Logic

Output Logical value (0 or 1). Logic

nHi Number of samples high Integer

nEnab If nEnab line is 0 the Schmitt output
will not go high

Logic
Counters and Logic

RPvdsEx 171
TTLDelay

Description: This component looks for the rising edge of the input and generates a TTL for a
single sample after the specified delay. This function is useful if two signals are to
be triggered with a short delay between them.

TTLDelay2

Description: When the input to this component is a logical 1, the output is a pulse train that is
logic high for one sample and low for N1 + N2 – 1 samples. This pulse train is
also delayed from the onset of the input by N1 + N2 samples. This is different than
TTLDelay which sends out one pulse after each rising edge of the input (see figure
below). The total delay is specified by N1 + N2 samples, however, depending on
the application, N2 may be zero.

Note: No pulses are sent if both N1 and N2 are both set to zero. Ensure that you have
at least a 1 entered for either N1 or N2.

The following figure shows the output of the TTLDelay2 component compared to that
of TTLDelay.

Name Description Data Type

Input Input Logic

Output Logical value (0 or 1) Logic

Tdel Delay time (in milliseconds) Floating Point
Counters and Logic

172 RPvdsEx

If an EdgeDetect (Edge=Rising) precedes TTLDelay2 in a circuit, the output of
TTLDelay2 is similar to that of TTLDelay.

Xor

Description: Logical XOR function. Returns 1 (true) if only one input is 1 (true). All multiple
inputs must be from a primary output. If it is necessary to route a parameter output
to this function use a ConstL to make it a primary output.

Name Description Data Type

Input Input Logic

Output Logical value (0 or 1) Logic

N1 Sample delay one Integer

N2 Sample delay two Integer
Counters and Logic

RPvdsEx 173
If more than two inputs are used, the XOR function steps through from top to
bottom.

Equation: Output = XOR (InputI, Input2I, Input3I, ... InputnI)

Examples: XOR (0, 0) = 0 (false)

XOR(1, 1) = 0 (false)

XOR (0, 1) = 1 (true)

XOR (1, 0) = 1 (true)

Note: If more than two inputs are used, the XOR function steps through from top to
bottom.

XOR (1, 1, 1, 1, 1) = 1 (true)

For this example the XOR function evaluates the inputs two at a time.

1 (1st input) XOR 1 (2nd input) = 0

0 (result of 1st and 2nd) XOR 1 (3rd input) = 1

1 (result of 1st, 2nd, and 3rd input) XOR 1 (4th input) = 0

0 (result of other 4 inputs) XOR 1 (5th input) = 1

Name Description Data Type

Input (multiple) Input (multiple) Logic

Output XOR operation of inputs Logic
Counters and Logic

174 RPvdsEx
Counters and Logic

175
Data	Reduction
The Data Reduction components decrease the size of the data set at the expense of
resolution.

This group includes the following components:

• CompTo16

• CompTo16D

• CompTo8

• CompTo8D

• ExpFrom16

• ExpFrom8

• PlotDec16

• ShufTo16

• ShufTo8

• SplitFrom16

• SplitFrom8

This group also includes the following components, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCCpTo8D

• MCCpTo16D

• MCPDec16

• MCI32ToI8

• MCI32ToI16

• MCI8ToI32

• MCI16ToI32

• MCI8ToI4

• MCI8ToI2

• MCI8ToI

CompressTo/ExpandFrom functions take a single input and reduce it from a 32-bit
value to an 8 or 16-bit value. The data is stored as a 32-bit word. For example
CompTo8 stores data in one-fourth the space and has one-fourth the resolution or
dynamic range (e.g. 200,000 points of data with 32-bit resolution is reduced to
50,000 with 8-bit resolution). ExpandFrom8 takes the stored data (32-bit word)
and expands it into four 32-bit words for data output and manipulation.

ShuffleTo/SplitFrom functions take several inputs and reduce them from a 32-bit
value to 8 or 16-bit value. The data is stored as a 32-bit word. For example
Data Reduction

176 RPvdsEx
ShuffleTo16 takes two inputs and reduces the resolution by one-half (16-bit). It
stores the first input value in the high portion of the word and the second input in
the low portion of the word. SplitFrom reverses the process. It extracts the two/four
values in word format and outputs them as 32-bit words for data output and
manipulation.

ReadTagVex is the ActiveX format to for reading reduced data in MATLAB. Other
programming languages can use either ReadTagVex or ReadTag. When using
ReadTag it is necessary to write your own data splitting or expansion routines.

Data Reduction and Scale Factor
It is sometimes desirable to reduce data sets to either increase data transfer rates or
reduce required memory allocation for data storage. This can be done by
compressing 32-bit numbers to 16-bit numbers, or by compressing 32-bit numbers
to 8-bit numbers, etc. For demonstration, we will consider converting 32-bit values
to 16 bits of precision.

The largest number that can be represented with 16 bits is 65535 (216–1). If we
designate one bit as a sign bit, the largest value that the remaining 15 bits can
represent is 32767. Using this sign bit results in a range from –32768 to 32767.
This range represents the number of discrete amplitude values available for the
converted signal. The level of the signal samples in the converted signal is
essentially rounded to the nearest digital value upon conversion. This process results
in a quantization error. To minimize this error and produce the best resolution in the
conversion, the scale factor should be set to best fit the input signal to this range.
If the input waveform is known to have a voltage swing of +/- 1.0 V, the scale
factor should be set to 32767. If the voltage swing is +/- 10 V, the scale factor
should be set to 3276.7. Setting the scale factor incorrectly will result in poor
resolution or meaningless data.

For example: Our range gives us 65535 divisions of the y-axes below. In the figure
to the right, if we zoom in on the improperly scaled input signal (B), we can see
that the quantized signal is degraded. This waveform can be represented by only 11
possible digital amplitude values. On the other hand, each sample in the properly
scaled waveform (A) can take on any of the 65536 values in the entire range.
This quantized waveform (blue) is a much better representation of the input
waveform (red).
Data Reduction

RPvdsEx 177
Later in the processing chain, if we convert the values back, the signals are rescaled
to match their original range by using the inverse of the scale factor used earlier.
The output values will have the dynamic range of the reduced data.

The process is very similar when compressing numbers to 8 bits of precision.

CompTo16

Description: CompTo16 (compress to 16-bit) takes a stream of 32-bit floating values, scales
and converts them to 16-bit fixed point numbers. Successive values are then output
in the upper and lower portions of a 32-bit integer. The Strobe1 output sends a
pulse high when the data is sent and should be linked to the AccEnable parameter
of the buffer component.

Data Reduction

178 RPvdsEx
This reduction technique can be used to decrease memory allocation for data storage
or double the data transfer rate to and from the PC.

The scale factor (SF) is used to appropriately scale the floating point input before
it is converted to 16 bits. The range that can be specified using 16 bits is +/-
32767. To get the maximum resolution, SF should be selected in such a way that
the maximum input voltage scales to +/- 32767. The default SF is set to 32767
and assumes that the input is bounded between +/- 1.0 V. Use an SF of 3276.7
for a +/- 10 V range. The SF and input values must be matched. Mismatch
between the SF and input value range gives poor resolution or meaningless data.
Use ExpandFrom16 to reverse the process. See “Data Reduction and Scale Factor”
on page 176 for more information on properly setting the scale factor.

CompTo16D

Description: CompTo16D (compress to 16-bit) is essentially the same as CompTo16 except it
allows for an enable input that ensures no data is passed through when compression
is not enabled. When enabled it scales and converts a stream of 32-bit floating
values to 16-bit fixed point numbers. Successive values are then output in the upper
and lower portions of a 32-bit integer. The Strobe output sends a pulse high when
the data is sent and should be linked to the AccEnable parameter of the buffer
component. This reduction technique can be used to decrease memory allocation for
data storage and double the data transfer rate to and from the PC.

Scale factor (SF) is used to appropriately scale the floating point input before it is
converted to 16 bits. The largest number that can be specified using 16 bits is +/

Name Description Data Type

Input Input Floating Point

Output Integer containing two 16-bit variables Integer

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point

Byp/Rst When high it resets the start of sample
conversion; when set high data is not
converted

Logic

Strobe1 Pulses high when data is sent; connect
to AccEnable line

Logic

Strobe2 Pulses high when component is in
bypass mode; bypass mode passes the
data unaltered

Logic
Data Reduction

RPvdsEx 179
- 32767. To get the maximum resolution, SF should be selected in such a way
that the maximum input voltage scales to +/- 32767. The default SF is 32767 and
assumes that the input is bounded between +/- 1.0 V. Use an SF of 3276.7 for
a +/- 10 V range. The SF and input values must be matched. Mismatch between
the SF and input value range gives poor resolution or meaningless data. Use
ExpandFrom16 to reverse the process.

See “Data Reduction and Scale Factor” on page 176 for more information on
properly setting the scale factor.

CompTo8

Description: CompTo8 (compress to 8-bit) takes a stream of 32-bit floating values, scales and
converts them to 8-bit fixed point numbers. Each value is stored in an 8-bit portion
of a 32-bit integer. The Strobe1 output sends a pulse high when the data is sent
and should be linked to the AccEnable parameter of the buffer component. This
reduction technique can be used to decrease memory allocation or increase transfer
rates.

Scale factor (SF) scales the floating point value before storing in integer format.
The largest number that can be specified using eight bits is +/- 127. To get the

Name Description Data Type

Input Input Floating Point

Output 32-bit integer containing two 16-bit
variables

Integer

SF Scale factor sets the scale for the input
before sample conversion; (scale factor
should be calculated based on the
input voltage)

Floating Point

Rst When high it resets the start of sample
conversion; when set high, data is not
converted

Logic

Enab Enables output when high Logic

Strobe Pulses high when data is sent Logic
Data Reduction

180 RPvdsEx
maximum resolution, SF should be selected in such a way that the maximum input
voltage scales to +/- 127. The default SF is set to 127 and assumes that the input
is bounded between +/- 1.0 V. Use an SF of 12.7 for a +/- 10 V range. The
SF and input values must be matched. Mismatch between the SF and input values
gives poor resolution or meaningless data. ExpandFrom8 reverses the process. See
“Data Reduction and Scale Factor” on page 176 for more information on properly
setting the scale factor.

CompTo8D

Description: CompTo8D (compress to 8-bit) is essentially the same as CompTo8 except it
allows for an enable input that ensures no data is passed through when compression
is not enabled. When enabled it scales and converts a stream of 32-bit floating
values to 8-bit fixed point numbers. Each value is stored in an 8-bit portion of a
32-bit integer. The Strobe output sends a pulse high when the data is sent and
should be linked to the AccEnable parameter of the buffer component. This reduction
technique can be used to decrease memory allocation and increase transfer rates.

Scale factor (SF) scales the floating point value before storing in integer format.
The largest number that can be specified using eight bits is +/- 127. To get the
maximum resolution, SF should be selected in such a way that the maximum input
voltage scales to +/- 127. The default SF is 127 and assumes that the input is
bounded between +/- 1.0 V. Use an SF of 12.7 for a +/-10 V range. The SF
and input values must be matched. Mismatch between the SF and input values gives
poor resolution or meaningless data. ExpandFrom8 reverses the process. See “Data
Reduction and Scale Factor” on page 176 for more information on properly setting

Name Description Data Type

Input Input Floating Point

Output Integer containing four 8-bit variables Integer

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point

Byp/Rst When high it resets the start of sample
conversion; when set High data is not
converted

Logic

Strobe1 Pulses high when data is sent; patch
to AccEnable line

Logic

Strobe2 Pulses high when component is in
bypass mode; bypass mode passes the
data unaltered

Logic
Data Reduction

RPvdsEx 181
the scale factor.

ExpFrom16

Description: ExpFrom16 (expand from 16-bit) converts integer data at its input to floating point
data at its output. It takes a stream of dual 16-bit integers and converts them into
two 32-bit floating point values for output. The scale factor (SF) scales the output
values and a Strobe sends a pulse high each time a 32-bit value is read by the
component.

SF defines the range of the expanded data set. It can be the inverse of the scale
factor value used to reduce the data. The default SF is set to 3.05185 e-05, the
inverse of the default scale factor for CompTo16 (32767). Data is passed through
unexpanded when Byp/Rst is set high. See “Data Reduction and Scale Factor” on

Name Description Data Type

Input Input Floating Point

Output 32-bit integer containing four 8-bit
numbers

Integer

SF Scale factor sets the scale for the input
before sample conversion; scale factor
should be calculated based on the
input voltage

Floating Point

Rst When high it resets the start of sample
conversion; when set high, data is not
converted

Logic

Enab Enables output when high Logic

Strobe Pulses high when enabled and data is
sent

Logic
Data Reduction

182 RPvdsEx
page 176 for more information on properly setting the scale factor.

ExpFrom8

Description: ExpFrom8 (expand from 8-bit) converts integer data at its input to floating point
data at its output. It takes a stream of four 8-bit integers and converts them into
four 32-bit floating point values for output. Output values have the dynamic range of
the reduced data.

Scale factor (SF) defines the range of the expanded data set. It can be the
inverse of the scale factor value used to reduce the data. The default SF is set to
0.007874, the inverse of the default scale factor for CompTo8 (127). Mismatching
scale factors results in an inaccurate scaling of the data. See “Data Reduction and
Scale Factor” on page 176 for more information on properly setting the scale factor.

Strobe sends a pulse high each time a 32-bit value is loaded to the component.

Name Description Data Type

Input Input (two 16-bit variables) Integer

Output Input values in floating point Floating Point

SF Scale factor sets the conversion factor
after data has been expanded

Floating Point

Byp/Rst When high it resets the start of sample
conversion; when set High data is not
converted

Logic

Strobe Pulses high on data ready for
conversion

Logic

Name Description Data Type

Input Input (four 8-bit variables) Integer

Output Input values in floating point Floating Point
Data Reduction

RPvdsEx 183
PlotDec16

Description: PlotDec16 tracks the max and min of the input for a set sample number (nDec),
scales and then outputs the values as the lower and upper portion of a word. Data
can then be stored in a memory buffer for access by a computer. Max values are
stored in the upper 16-bits of the word. Min values are stored in the lower 16-bits
of the word.

Scale factor (SF) sets the output range. For SF = 100, a +/- 1.0 volt signal will
have a range of +/- 100. Data values can be set for a graph plot that is 200
pixels high by using a scale factor of 100 (+/- 100 pixels). To separate the
output into the corresponding max and min values use ReadTagVEX (See the
ActiveX Manual).

Note: Because the values are stored using 16 bits, if the scaled input value exceeds +/-
32767 the data can be corrupted.

SF Scale factor sets the conversion factor
after data has been expanded

Floating Point

Byp/Rst When high it resets the start of sample
conversion; when set high data is
passed through unexpanded

Logic

Strobe Pulses high on data ready for
conversion

Logic

Name Description Data Type

Name Description Data Type

Input Signal Float
Data Reduction

184 RPvdsEx
MCCpTo8D

Description: MCCpTo8D (compress to 8-bit) is the multi-channel version of CompTo8D. When
enabled, the device scales and converts a stream of multi-channel 32-bit floating-
point values to multi-channel 8-bit fixed-point numbers. Each value is stored in an
8-bit portion of a 32-bit integer. The Strobe output goes high when the data is
available and may be used to clock the data into a buffer component. This reduction
technique can be used to decrease memory allocation and increase transfer rates.

Scale factor (SF) scales the floating-point value before storing in integer format.
The largest number that can be specified using eight bits is +/- 127. To get the
maximum resolution, SF should be selected in such a way that the maximum input
voltage scales to +/- 127. The default SF is 127 and assumes that the input is
bounded between +/- 1.0 V. Use an SF of 12.7 for a +/-10 V range. The SF
and input values must be matched. Mismatch between the SF and input values gives
poor resolution or meaningless data. Use ExpandFrom8 on each channel of data to
reverse the process. See “Data Reduction and Scale Factor” on page 176 for more
information on properly setting the scale factor.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Output Decimated value based on SF and
nDec

32-bit Integer

nDec Block size of data points in which a
min and max are found

Integer

SF Scale factor is the conversion value
before compression

Floating Point

Enab When enable high, PlotDec16 is running Logic

Strobe Pulses high when data is sent Logic

Name Description Data Type

Name Description Data Type

Input Multi-channel input Floating Point

Output Multi-channel output (32-bit integers
containing four 8-bit numbers each)

Integer

nChan Number of channels Integer (static)
Data Reduction

RPvdsEx 185
MCCpTo16D

Description: MCCpTo16D is the multi-channel version of CompTo16D (compress to 16-bit).
When enabled, MCCpTo16D scales and converts a multi-channel stream of 32-bit
floating-point values to multi-channel 16-bit fixed-point numbers. Successive values
are then output in the upper and lower portions of a 32-bit integer. The Strobe
output goes high when the data is available and may be used to clock the data into
a buffer component. This reduction technique can be used to decrease memory
allocation for data storage and double the data transfer rate to and from the PC.

Scale factor (SF) is used to appropriately scale the floating point input before it is
converted to 16 bits. The largest number that can be specified using 16 bits is +/
- 32767. To get the maximum resolution, SF should be selected in such a way
that the maximum input voltage scales to +/- 32767. The default SF is 32767 and
assumes that the input is bounded between +/- 1.0 V. Use an SF of 3276.7 for
a +/- 10 V range. The SF and input values must be matched. Mismatch between
the SF and input value range gives poor resolution or meaningless data. Use
ExpandFrom16 on each channel of data to reverse the process. See “Data Reduction
and Scale Factor” on page 176 for more information on properly setting the scale
factor.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

SF Scale factor sets the scale for the input
before sample conversion; scale factor
should be calculated based on the
input voltage

Floating Point

Rst When high it resets the start of sample
conversion; when set high, data is not
converted

Logic

Enab Enables output when high Logic

Strobe Pulses high when enabled and data is
sent

Logic

Name Description Data Type

Name Description Data Type

Input Multi-channel input Floating Point
Data Reduction

186 RPvdsEx
MCPDec16

Description: MCPDec16 is the multi-channel version of PlotDec16. It tracks the maximum and
minimum values of the input for a set number of samples (nDec), scales them,
and then outputs the values as the lower and upper portion of a word. Data can
then be stored in a memory buffer for access by a computer. Maximum values are
stored in the upper 16-bits of the word. Minimum values are stored in the lower 16-
bits of the word.

Scale factor (SF) sets the output range. For SF = 100, a +/- 1.0 volt signal will
have a range of +/- 100. Data values can be set for a graph plot that is 200
pixels high by using a scale factor of 100 (+/- 100 pixels). To separate the
output into the corresponding max and min values use ReadTagVEX (See the
ActiveX Manual).

Note: Because the values are stored using 16 bits, if the scaled input value exceeds +/-
32767 the data can be corrupted.

Output Multi-channel output (32-bit integers
containing two 16-bit numbers each)

Integer

nChan Number of channels Integer (static)

SF Scale factor sets the scale for the input
before sample conversion; scale factor
should be calculated based on the
input voltage

Floating Point

Rst When high it resets the start of sample
conversion; when set high, data is not
converted

Logic

Enab Enables output when high Logic

Strobe Pulses high when enabled and data is
sent

Logic

Name Description Data Type
Data Reduction

RPvdsEx 187
Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

ShufTo16

Description: ShufTo16 takes 32-bit floating point values from two inputs, reduces each, combines
them, and sends them from a single output as 32-bit integers. The top 16-bits
stores the first channel and the bottom 16-bits stores the second channel. This
reduction technique can be used to store data from two analog inputs for high speed
transfer. At a 100 k sampling rate it is possible to stream two channels in real-time
to disk.

Scale factor (SF) is used to define the upper and lower limits of the signal. The
largest number that can be specified using 16 bits is +/- 32767. To get the
maximum resolution, SF should be selected in such a way that the maximum input
voltage scales to +/- 32767. The default SF is set to 32767 and assumes that
the input is between +/- 1.0 V. Use an SF of 3276.7 for a +/- 10 V range. The

Name Description Data Type

Input Signal Floating Point

Output Decimated value based on SF and
nDec

32-bit Integer

nChan Number of channels in the input signal Integer (Static)

nDec Block size of data points in which a
min and max are found

Integer

SF Scale factor is the conversion value
before compression

Floating Point

Enab When enable high, MCPDec16 is
running

Logic

Strobe Pulses high when data is sent Logic
Data Reduction

188 RPvdsEx
SF and input values must be matched. Mismatch between the SF and input values
gives poor resolution or meaningless data. SplitFrom16 reverses the process.

See “Data Reduction and Scale Factor” on page 176 for more information on
properly setting the scale factor.

ShufTo8

Description: ShufTo8 (Shuffle To 8-bit) takes 32-bit floating point values from four inputs,
reduces each and sends them as a 32-bit integer for output. The first 8-bits stores
the first channel the second 8-bits the second and so forth. This reduction technique
can be used to store data from four analog inputs for high speed transfer.

Scale factor (SF) is used to define the upper and lower limits of the signal. The
largest number that can be specified using eight bits is +/- 127. To get the
maximum resolution, SF should be selected in such a way that the maximum input
voltage scales to +/- 127. The default SF is set to 127 and assumes that the input
is bounded by +/- 1.0 V. Use a scale factor of 12.7 for a +/- 10 V range. The
SF and input values must be matched. Mismatch between scale factor and input
values gives poor resolution or meaningless data. SplitFrom8 reverses the process.

See “Data Reduction and Scale Factor” on page 176 for more information on
properly setting the scale factor.

Example(s): See “ShufTo16” on page 187.

Name Description Data Type

Input(1-2) Input Floating Point

Output Integer containing 2 16-bit values Integer

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point

Name Description Data Type

Input(1-4) Input Floating Point

Output Integer containing four 8-bit variables Integer

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point
Data Reduction

RPvdsEx 189
SplitFrom16

Description: SplitFrom16 takes 32-bit integers and splits them into two 16-bit values and converts
them to two floating point values for output. Output values have the dynamic range
of the reduced data.

Scale factor (SF) defines the range of the shuffled data sets. It must be the
inverse of the scale factor value used to shuffle the data. The default scale factor is
set to 3.05185 e-05, the inverse of the default scale factor for ShufTo16 (32767).
Mismatching scale factors results in inaccurate scaling of the data. See “Data
Reduction and Scale Factor” on page 176 for more information on properly setting
the scale factor.

The outputs are matched to the original inputs.

SplitFrom8

Name Description Data Type

Input Input (integer value containing two 16-
bit values)

Integer

Output(1-2) Converted floating point values Floating Points

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point
Data Reduction

190 RPvdsEx
Description: SplitFrom8 takes 32-bit integers and splits them into four 8-bit values and sends
them as floating point values for output. Output values have the dynamic range of
the reduced data.

Scale factor (SF) defines the range of the shuffled data sets. It must be the
inverse of the scale factor value used to shuffle the data. The default SF is set to
0.07874, the inverse of the default scale factor for ShufTo8 (127). Mismatch
between scale factors results in inaccurate scaling of the data. See “Data Reduction
and Scale Factor” on page 176 for more information on properly setting the scale
factor.

The channel output matches the original channels for input.

Example: See “SplitFrom16” on page 189.

Name Description Data Type

Input Input (integer value containing four 8-
bit variables)

Integer

Output(1-4) Converted floating point values Floating Points

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point
Data Reduction

191
Delay	Functions
Delay Function components can be used to create intentional delays between signals
or to synchronize delays that are introduced by the ADC and DAC. See “DAC and
ADC Delays” on page 56, for more information.

This group includes the following components:

• ADCDelay

• DACDelay

• Latch

• LongDelay

• LongDynDelay

• MultLatch

• SampDelay

• ShortDelay

• ShortDynDelay

This group also includes the following component, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCDelay

• MCDelay2

• MCLatch

ADCDelay

Description: Time delay equal to ADC group delay for the RP2.

Note: The ADCDelay component will always delay for 41 samples, which is correct for an
RP2. Because of the different ADC delays of the various processors (RP2.1 = 65
samples, RX6 = 70 samples, etc.), this component will delay accurately for the
RP2 only.

Name Description Data Type

Input Input Any
Delay Functions

192 RPvdsEx
Equation: Output = (Input[-ADCDelay])

Example: Analog-to-Digital Delay

File: Examples\ADCdelayEx.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

This example mixes the input from channel one with a tone generated by the circuit.
The phase of the tone is reset to zero when an external trigger is detected. The
ADCDelay component is included in the circuit before the ScaleAdd to ensure that
the tone and the input signal phase are matched.

DACDelay

Description: Time delay equal to 30 samples, the DAC group delay for the RP2 and RP2.1.

Note: The DACDelay component will always delay for 30 samples, which is correct for an
RP2 and RP2.1. However, the RA16 has a DAC delay of 18 samples and the RV8
has a DAC delay of 2-4 samples. This component will accurately account for the
DAC delay for the RP2 and RP2.1 only.

Equation: Output = (Input[-DACDelay])

Example: Digital-to-Analog Delay

File: Examples\DAC_ex.rcx

Output Input delayed by 41 samples (group
delay of RP2 ADC)

Any

Name Description Data Type

Name Description Data Type

Input Input Any

Output Input delayed by 30 samples (group
delay of DAC for RP2 and RP2.1)

Any
Delay Functions

RPvdsEx 193
Default Device: RP2.1 Processor

Sampling Rate: 50 kHz

This example plays a tone from analog output channel one when it receives a
software trigger. A DACDelay is used to synchronize the output on Bit-1 of the
digital output with the output of the Tone on the DAC. A LinGate is used to ramp
the tone on and off with a 10 ms rise-fall time. A Schmitt trigger controls the
duration of the tone.

Latch

Description: Latches input to output on the rising edge of a trigger. The output will remain
unchanged until the trigger goes high again and the output is latched to the new
value.

Note: Until the first time the trigger goes high, the output will be zero.

Equation: If (Trg) then Output = (Input) else Output remains unchanged.

Name Description Data Type

Input Input Any

Output When Trg = 1 output = input else
output remains unchanged

Any

Trg Triggers latch Logic
Delay Functions

194 RPvdsEx
LongDelay

Description: Time delay using SDRAM. (Will not work with RP2-5, because it does not have
memory. Can only use short delay). Data port can be used to view data currently
in delay line.

Equation: Output = (Input[-Nms])

Example: Sum, page 121/

LongDynDel

Description: The LongDynDel component performs a dynamic delay using SDRAM. Unlike the
LongDelay component, which has a delay value that is fixed at compile time, the
delay value (Dms) on LongDynDelay is dynamic with a minimum accepted input
value of 0.01 milliseconds. The maximum delay value (Mms) is fixed and Dms can
never be allowed to exceed it. The LongDynDel component can be used to generate
delays that are not quantized to the sample rate. To do this, it cross fades
(averages) the two points about the delay. An example is generating Doppler effects
for 3D auditory displays.

When setting up a variable delay line, keep in mind that the signal may be distorted
if the delays are not multiples of the sample period. When the delay is not a
multiple of the sample period, there is a linear relationship between the location of
the delay and the amount that the point on either side of the delay contributes to
the corresponding point in the delayed signal. For example, if the desired delay was
0.25 samples, each point in the delayed signal would be described by the following:

Name Description Data Type

Input Input Any

Output Input with a set time delay Any

Nms Length of delay in milliseconds
(maximum is 10,000,000; the
minimum is 1 ms)

Floating Point (Static)

>Data Pointer to delay line Pointer
Delay Functions

RPvdsEx 195
(1-0.25)*sample value before delay + 0.25*sample value after delay.

Because this component uses cross fading to implement the delay, it is not suitable
for delaying a TTL pulse. To delay a TTL pulse, use either the TTLDelay or
TTLDelay2 component. Because it uses SDRAM, it will not work on the RP2-5.

Note: When using Parameter Tags to input the delay value (Dms), input values less than
0.01 ms will generate an error. To dynamically implement “no delay” intervals, use
a Compare to bypass the delay during those intervals as shown in the example
circuit segment below.

MCDelay

Description: MCDelay implements a delay of n samples on each of the channels in the multi-
channel input. This component uses internal device memory. Because internal memory
is a limited resource (20kB) you may need to monitor the available internal memory
when using this component.

See the “FreeDM” on page 202. Also see “Working with Multi-Channel
Components” on page 61.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Input Floating Point

Output Input with a set time delay Floating Point

Mms Maximum delay value for Dms. Floating Point (Static)

Dms Delay length in milliseconds. It cannot
exceed Maximum delay value.

Floating Point

>Data Pointer to delay line Pointer

Name Description Data Type

Input Multi-channel input Any
Delay Functions

196 RPvdsEx
MCDelay2

Description: MCDelay2 implements a delay of n samples on each of the channels in the multi-
channel input. This component is optimized for short delays only.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCLatch

Description: MCLatch is the multi-channel version of the Latch component. It latches input to
output on the rising edge of a trigger. The output will remain unchanged until the
trigger goes high again and the output is latched to the new value.

Output Multi-channel delayed output Same as input

nChan Number of channels in the input/output Integer (Static)

nDelay Delay to be applied in number of
samples

Integer

Name Description Data Type

Name Description Data Type

Input Multi-channel input Any

Output Multi-channel delayed output Same as input

nChan Number of channels in the input/output
(must be even)

Integer (Static)

nDelay Delay to be applied in number of
samples

Integer
Delay Functions

RPvdsEx 197
Note: Until the first time the trigger goes high, the output will be zero.

Equation: If (Trg) then Output = (Input) else Output remains unchanged.

MultLatch

Description: The 'MultLatch' latches multiple inputs to multiple outputs when triggered. Inputs can
take all formats including Parameter tags. The Multlatch should be used when several
parameters need to be sent out at the same time. In the example below the
frequency, amplitude and phase of a tone generator are latched at the same time.

Tech Notes: All inputs and outputs act as Parameters.

Equation: If (Trg) then Output = (Input) else Output=0

Example: MultLatch - In this example, a PulseTrain2 triggers the MultLatch. Any changes in
the ParTags will modify the phase, frequency and/or amplitude of the Tone
generator.

Name Description Data Type

Input Input signal to be latched Any

Output When Trg = 1, Output = Input
otherwise Output remains unchanged

Any

Trg Triggers latch Logic

Name Description Data Type

In1 Input Floating Point

In2 Input Floating Point

In3 Input Floating Point

Trg Triggers latch TTL

> Output Floating Point

> Output Floating Point

> Output Floating Point
Delay Functions

198 RPvdsEx

SampDelay

Description: Time delay using SDRAM. (Will not work with RP2-5 because it does not have
extended memory). This component is similar to the LongDelay component except
the delay parameter nDelay is specified in samples instead of milliseconds. Data port
can be used to view data currently in delay line.

ShortDelay

Description: Time delay using internal memory. Maximum delay of 10 ms. Data port can be used
to view data currently in delay line.

Note that there are only 1024 32-bit words of Dynamic Memory allocated for Delay
functions. The number of short delays that are allowed is dependent on the delay

Name Description Data Type

Input Input Any

Output Delayed output Any

nDelay Delay to be applied in number of
samples (maximum 100,000,000)

Integer

>Data Pointer to delay line Pointer
Delay Functions

RPvdsEx 199
length and the sampling rate. For example a millisecond ShortDelay consumes 50
words at 50 kHz sampling rate.

Equation: Output = (Input[-Nms])

Example: Short Delay, page 198.

ShortDynDel

Description: The ShortDynDel component implements a dynamic delay using internal memory.
Unlike the ShortDelay component, which has a delay value that is fixed at compile
time, the delay value (Dms) on ShortDynDelay is dynamic with a minimum accepted
input value of 0.01 milliseconds. The maximum delay value (Mms) is fixed and
Dms can never be allowed to exceed it. The maximum value of Mms is 10
milliseconds. If a longer delay is required, use the LongDynDel component, which
has a larger memory buffer. This component can be used to generate delays that
are not quantized to the sample rate. To do this, it cross fades (averages) the two
points about the delay.

When setting up a variable delay line, keep in mind that the signal may be distorted
if the delays are not multiples of the sample period. When the delay is not a
multiple of the sample period, there is a linear relationship between the location of
the delay and the amount that the point on either side of the delay contributes to
the corresponding point in the delayed signal. For example, if the desired delay was
0.25 samples, each point in the delayed signal would be described by the following:

(1-0.25)*sample value before delay + 0.25*sample value after delay.

Because this component uses cross fading to implement the delay, it will not work
correctly for delaying a TTL pulse. To delay a TTL pulse, use either the TTLDelay
or TTLDelay2 component. Because it uses internal memory, it is compatible with the
RP2-5.

Name Description Data Type

Input Input Any

Output Input with a set time delay Any

Nms Length of delay in milliseconds
(maximum is 10)

Floating Point (Static)

>Data Pointer to delay line Pointer

Name Description Data Type

Input Input Floating Point
Delay Functions

200 RPvdsEx
Note: When using Parameter Tags to input the delay value (Dms), input values less than
0.01 ms will generate an error. To dynamically implement “no delay” intervals, use
a Compare to bypass the delay during those intervals as shown in the example
circuit segment below.

Output Input with a set time delay Floating Point

Mms Maximum delay value for Dms(10) Floating Point (Static)

Dms Delay length in milliseconds. It cannot
exceed Maximum delay value.

Floating Point

>Data Pointer to delay line Pointer

Name Description Data Type
Delay Functions

201
Device	Status
Device Status components serve both to monitor and do math with major system
status values. These components feed the processing chain with specific system
information like DSP cycle usage or available system memory. The value can be
used to compute some circuit parameter or simply monitored system status. When
using RPvdsEx a ParWatch can be used to monitor the output of a Device Status
component.

This group includes the following components:

• CycUsage

• FreeDM

• FreePM

• FreeXM

CycUsage

Description: Feeds stream with DSP cycle usage in percent. Unpredictable behavior may be
experienced when cycle usage exceeds 90%.

Important:! If cycle usage is over 100% the value returned will not indicate this. For example a
cycle usage of 120% will return 20%. To determine if your cycle usage is over 100%
lower your sampling rate and check to see if cycUsage “increases”. An increase
means that the cycle usage was greater than 100%. Higher sampling rates use more
cycles than lower.

Equation: Output = 100% * DSP_Cycle_Used_Per_Second / 50,000,000

Example: Cycle Usage

File: Examples\cycleUsage_ex.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

Name Description Data Type

Output Cycle Usage (0-100) Floating Point
Device Status

202 RPvdsEx
This circuit uses the four face plate LEDs found on the RP2 as a DSP cycle usage
reporting meter. The CycUsage component is fed to four Float2TTL converters which
have threshold settings. These settings are set to indicate activity over the levels
shown. The four TTL signals are then made to control the four LEDs of the TTL
output port. Notice that because Bit-0 is physically located at the top of the four
LED group it is used to indicate the highest level of usage. In general, adding cycle
usage with a parameter watch is a good way of determining the cycle usage of your
system.

FreeDM

FreePM

FreeXM

Description: Feeds stream with amount of currently available memory of specified type. Data
memory (DM) is typically used for filter delay line and short delays. Program
Memory (PM) holds filter coefficients and External Memory (XM) is used for long
delays and buffers.
Device Status

RPvdsEx 203
Note: The value shown is the number of free 4-byte words (samples) rather than the
number of free bytes.

Name Description Data Type

Output Amount of memory left (DM, PM or
XM)

Integer
Device Status

204 RPvdsEx
Device Status

205
Digital	Filters
Digital Filter components perform basic digital filtering tasks. Coefficients can be pre-
loaded or generated and updated on-the-fly. See “Coefficient Generators” on
page 151, for information on dynamically changing filter performance.

Note: To satisfy the Nyquist theorem, the filter’s corner frequency should always be less
than half the sampling frequency.

This group includes the following components:

• Biquad

• FIR

• IIR

• Smooth

This group also includes the following components, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• FIR2

• FIR2D

• FIRD

• MCBiquad

• MCFIR

• MCFIR2

• MCFIRD

• MCSmooth

• StereoFIR2

Biquad

Description: This component filters the input with an Nth stage Biquad. nBiq can be from one to
16 and care must be taken to match the number of stages with whatever coefficient
generation scheme you are using. The Coefficient buffer is [nBIQ*5] in length and
Digital Filters

206 RPvdsEx
is kept in PM. A delay line of length [nBIQ*4] is held in DM. Each digital filter
needs its own coefficient generator. Biquad accepts coefficient inputs from the filter
coefficient generators.

Coefficients can be generated using one of the Coefficient Generator components or
supplied via parameter tag (for example, when generated using the Biquad
Coefficient Control in OpenController software).

Note: Filter frequencies should be less than half the sampling rate of the system.

Equation: Output = Biquad (Input)

Example: Biquad Filter

File: Examples\BiquadEx.rcx

Default Device: RP2 Processor

Sampling Rate: 50 kHz

This somewhat complex circuit demonstrates a number of processing concepts,
including the Biquad filter and the ButCoef, a Butterworth coefficient generator with
specific attributes for the Biquad filter. The circuit generates filtered amplitude
modulated noise for D/A channel one. The noise is low-pass filtered using a Biquad
with the filtering coefficients being generated in real-time via the ButCoef component.
Because the coefficients are generated in real-time the low-pass filter frequency can
be changed dynamically.

The Tone generator at chain position [1:1,0] is used to modulate the filter corner
frequency by octaves. The Exp2 component converts the octave output to a linear
multiplier that is then scaled by 2000 via ScaleAdd. This generates a sinusoidal
non-linear frequency sweep that goes from two octaves (500 Hz) below to two
octaves (8000 Hz) above 2000 Hz.

The Tone generator at [1:5, 0] is used to modulate the amplitude of the noise to
a depth of 50%. SqRoot and Divide are used to normalize the level of the circuit’s
output so it won’t get louder as the bandwidth gets wider.

Name Description Data Type

Input Input Floating Point

Output Filtered signal Floating Point

nBIQ Number of Biquads (min=1, max=16) Integer (Static)

>Coef Pointer to Coef buffer (PM).
Ordering: B0(1), B1(1), B2(1),
A1(1), A2(1), B0(2), B1(2),
B2(2), A1(2), A2(2), … B0(n),
B1(n), B2(n), A1(n), A2(n),
where n=nBiq.

Pointer

>Delay Pointer to delay buffer (DM). Pointer
Digital Filters

RPvdsEx 207

FIR

Description: This component filters the input with an Nth order FIR. The Order must be specified
as at least 1 and not more than 1024. Two memory buffers are associated with FIR.
The Coefficient buffer is [Order+1] in length and is kept in PM. A delay line of
length [Order+1] is held in DM. Each digital filter needs its own coefficient
generator.

Coefficients can be generated using one of the Coefficient Generator components or
supplied via parameter tag (for example, when generated using the Biquad
Coefficient Control in OpenController software).

Note: Filter frequencies should be less than half the sampling rate of the system.

Equation: Output = FIR (Input)

Example: FIR/Data Table - This example uses an FIR filter to alter the input signal. The FIR
filter coefficients are loaded into a DataTable. The input of ADC channel one is

Name Description Data Type

Input Input Floating Point

Output Filtered signal Floating Point

Order Number of taps minus 1. Min=1,
Max=1024

Integer (Static)

>Coef Pointer to Coef buffer (PM)
Ordering:
B(0), B(1), B(2), … B(n), where
n=Order

Pointer

>Delay Pointer to delay buffer (DM). Pointer
Digital Filters

208 RPvdsEx
filtered by the 33 tap FIR filter and played out of the DAC. The contents of the
DataTable can be loaded with FIR filters generated from MATLAB.

FIR2

Description: The FIR2 is a single channel, optimized FIR filter that supports multiple filter
coefficient sets.

This component filters the input with an Nth order FIR. Order must be specified as
at least 5 and should always be odd (nTaps will be even). Two memory buffers
are associated with FIR2. The Coefficient buffer is [(Order+1)*nSets] in length and
is kept in PM. A delay line of length [Order+1] is held in DM. FIR2 supports
instant coefficient switching through (zero-based) SetSel. Note that the FIR
Coefficient Data Table may not be used with the FIR2 component.

SetSel is used to specify the coefficient set to use. This input can range from 0 to
nSets-1. Setting this input to a value outside this range will cause your circuit to
fail.

All of the xxFIR2 components allow for a unique set of coefficients for each channel
(when more than one channel is applicable) and instantaneous switching between
coefficients sets using the SetSel input. Also longer filters can be specified. While
there is a hard limit on the filter order of 8191, this value is more often limited by
the amount of PM memory available for the filter. When specifying an FIR2 type
filter, pay special attention to any loading or memory allocation errors that are
generated when your circuit is loaded.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Note: Filter frequencies should be less than half the sampling rate of the system.

Name Description Data Type

Input Input Floating Point
Digital Filters

RPvdsEx 209
Equation: Output = FIR (Input)

Coefficient

Ordering: To optimize performance the FIR2 component requires each coefficient set be
arranged into a shuffled format. Each coefficient set must be shuffled as follows:

n = nTaps = Order + 1

B(0), B(n/2), B(1), B(n/2+1) … B(n/2-1), B(n-1)

For Example:

Order = 9

nSets = 3

Filter coefficients in logical order:

The coefficients must be shuffled as follows:

The coefficients are then concatenated and loaded as a row vector as follows:

Coef = [Set1, Set2, Set3]

Output Filtered signal Floating Point

Order Number of taps minus 1. Must be odd.
Min=5, Max is limited by available
memory.

Integer (Static)

nSets Number of coefficient sets. Integer (Static)

SetSel Selects the coefficient sets to apply. Integer

>Coef Pointer to Coef buffer (PM)
See below for coefficient ordering.

Pointer

>Delay Pointer to delay buffer (DM). Pointer

Name Description Data Type

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

Set1: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Set2: 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

Set3: 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

B0 B5 B1 B6 B2 B7 B3 B8 B4 B9

Set1: 1.0 1.5 1.1 1.6 1.2 1.7 1.3 1.8 1.4 1.9

Set2: 2.0 2.5 2.1 2.6 2.2 2.7 2.3 2.8 2.4 2.9

Set3: 3.0 3.5 3.1 3.6 3.2 3.7 3.3 3.8 3.4 3.9
Digital Filters

210 RPvdsEx
FIR2D

Description: The FIR2D component is identical to FIR2, except is has an additional Enable input.
The filter is only active when Enable is high. This lets you create a lower frequency
FIR filter with fewer taps.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

FIRD

Description: The FIRD component is identical to FIR, except is has an additional Enable input.
The filter is only active when Enable is high. This lets you create a lower frequency
FIR filter with fewer taps.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

IIR

Description: This component filters the input with an Nth order IIR. The Order must be specified
as at least 1 and not more than 32. Two memory buffers are associated with IIR.
The Coefficient buffer is [(Order*2)+2] in length and is held in PM. A delay line
of length [(Order*2)+2] is held in DM. Each digital filter needs its own coefficient
generator.
Digital Filters

RPvdsEx 211
Coefficients can be generated using one of the Coefficient Generator components or
supplied via parameter tag (for example, when generated using the Biquad
Coefficient Control in OpenController software).

Note: Filter frequencies should be less than half the sampling rate of the system.

Equation: FO = IIR (FI)

MCBiquad

Description: This component is a multi-channel version of the Biquad component. Coefficients
must be supplied via the coefficient pointer (>Coef). The Coefficient buffer is
[nBIQ*5] in length and is kept in PM. A delay line of length
[((nBIQ*4)+1)*nChans] is held in DM.

Coefficients can be generated using one of the Coefficient Generator components or
supplied via parameter tag (for example, when generated using the Biquad
Coefficient Control in OpenController software). One to 16 biquad stages can be
specified (nBIQ). The number of stages specified in MCBiquad must match the
number of stages specified in the coefficient generator. A separate coefficient
generator must be used for each MCBiquad.

Name Description Data Type

Input Input Floating Point

Output Filtered signal Floating Point

Order Number of taps minus 1. Min=1,
Max=32

Integer (Static)

>Coef Pointer to Coef buffer (PM).
Ordering: B(0), B(1), … B(n),
A(1), … A(n), where n=Order

Pointer

>Delay Pointer to delay buffer (DM). Pointer
Digital Filters

212 RPvdsEx
Also see “Working with Multi-Channel Components” on page 61.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCFIR

Description: The MCFIR filters each channel of a multi-channel input with an Nth order FIR.
Order must be specified as at least 1 and must always be odd. The Coefficient
buffer is [Order+1] in length and is kept in PM. A delay line of length
[((Order+1)*nChan)+nChan] is held in DM.

The MCFIR component is similar to the MCBiquad filter in that all channels are
filtered with the same set of coefficients.

See “MCFIR2” on page 213, if you need to have a different filter for each channel.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Multi-channel input Floating Point

Output Filtered multi-channel output Floating Point

nChan Number of channels of input/output Integer (Static)

nBIQ Number of Biquads (min=1, max=16) Integer (Static)

>Coef Pointer to Coef buffer (PM)
See “Biquad” on page 205 for
ordering.

Pointer

>Delay Pointer to delay buffer (DM) Pointer

Name Description Data Type

Input Multi-channel input Floating Point

Output Multi-channel filtered signal Floating Point

nChan Number of channels Integer (Static)

Order Number of taps minus 1. Must be odd.
Min=1

Integer (Static)
Digital Filters

RPvdsEx 213
Equation: Output = FIR (Input)

MCFIR2

Description: The MCFIR2 is a multi-channel version of the FIR2 component. This component
supports a different filter for each channel and multiple coefficient sets.

This component filters each channel in a multi-channel input with an Nth order FIR.
Order must be specified as at least 3 and must be odd (nTaps will be even). The
Coefficient buffer is [(Order+1)*nChan*nSets] in length and is kept in PM. A delay
line of length [((Order+1)*nChan)+nChan] is held in DM. MCFIR2 supports
instant coefficient switching through SetSel. See “FIR2” on page 208, for more
details.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: Output = FIR (Input)

>Coef Pointer to Coef buffer (PM). See
“FIR” on page 207 for ordering.

Pointer

>Delay Pointer to delay buffer (DM). Pointer

Name Description Data Type

Name Description Data Type

Input Multi-channel input Floating Point

Output Multi-channel filtered signal Floating Point

nChan Number of channels Integer (Static)

Order Number of taps minus 1. Must be odd.
Min=3

Integer (Static)

nSets Number of coefficient sets. Integer (Static)

SetSelect Selects the coefficient sets to apply. Integer

>Coef Pointer to Coef buffer (PM)
See below for coefficient ordering.

Pointer

>Delay Pointer to delay buffer (DM). Pointer
Digital Filters

214 RPvdsEx
Ordering: Odd and even channel coefficients must be shuffled as follows:

n = nTaps = Order + 1

c = nChans

B0(1), B0(2), B1(1), B1(2), ...Bn-1(1), Bn-1(2) : B0(3), B0(4), B1(3),
B1(4) ...

For Example:

Order = 3

nChan = 6

Filter coefficients in logical order:

These coefficients must be shuffled as follows:

The coefficients are then concatenated and loaded as a row vector as follows
(multiple sets are appended):

Coef = [Ch1_2, Ch3_4, Ch5_6][next set...]

MCFIR2D

Chan B0 B1 B2 B3

1 1.0 1.1 1.2 1.3

2 2.0 2.1 2.2 2.3

3 3.0 3.1 3.2 3.3

4 4.0 4.1 4.2 4.3

5 5.0 5.1 5.2 5.3

6 6.0 6.1 6.2 6.3

B0(o) B0(e) B1(o) B1(e) B2(o) B2(e) B3(o) B3(e)

Ch1_2 1.0 2.0 1.1 2.1 1.2 2.2 1.3 2.3

Ch3_4 3.0 4.0 3.1 4.1 3.2 4.2 3.3 4.3

Ch5_6 5.0 6.0 5.1 6.1 5.2 6.2 5.3 6.3
Digital Filters

RPvdsEx 215
Description: The MCFIR2D component is identical to MCFIR2, except is has an additional Enable
input. The filter is only active when Enable is high. This lets you create a lower
frequency FIR filter with fewer taps.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCFIRD

Description: The MCFIRD component is identical to MCFIR, except is has an additional Enable
input. The filter is only active when Enable is high. This lets you create a lower
frequency FIR filter with fewer taps.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCSmooth

Description: The MCSmooth is a multi-channel version of the Smooth component. This component
however, smooths multi-channel data using an exponential moving average.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Multi-channel Input Floating Point

Output Multi-channel Scaled plus add value of
multi-channel Input

Floating Point

nChan Number of channels of input/output Integer (Static)

Alpha Smoothing factor (adjusts the degree
of weighing)

Floating Point
Digital Filters

216 RPvdsEx
Equation: Notes:

Output = Alpha * Input + (1 - Alpha) * Output-1

Larger values of Alpha have less of a smoothing effect and place more weight on
recent changes to the input. Smaller values of Alpha respond less to recent changes
and produce a greater smoothing effect.

Example: This example filters out any DC bias effectively AC coupling the multi-channel input
signal. MCSmooth is acting as a 9.8 Hz low pass filter. This low passed signal is
subtracted from the input signal, so the final output is effectively acting a 9.8 Hz
high pass filter.

MCSmooth is used to eliminate frequency content above a certain frequency. The
equation to calculate Alpha is based on the desired cutoff frequency and the
sampling rate of the RPvdsEx circuit.

The equation is:

Alpha = 1 - e(-2*pi*low_pass_frequency/sampling_rate)

where low_pass_frequency is the desired low-pass frequency

and sampling_rate is the sampling rate of the RPvdsEx circuit (e.g. 24414.0625)

In this example, Alpha = 0.00251 corresponds to a ~9.8 Hz frequency cutoff.

Smooth

Description: This component filters with a simple averaging filter.

Equation: Output = (1-K) * Input + K * Output-1

Where: K = exp(-2*pi / ((Tau/1000) * SRATE))

Name Description Data Type

Input Input Floating Point

Output Scaled plus add value of Input Floating Point

Tau Smoothing Time constant in milliseconds Floating Point (Static)
Digital Filters

RPvdsEx 217
Example: Smooth - This simple example demonstrates how smooth can be used to build an
RMS measurement circuit. The input signal is smoothed with a time constant of 1000
milliseconds before the RMS of the input is output.

StereoFIR2

Description: The StereoFIR2 is an optimized stereo FIR filter that supports multiple filter coefficient
sets and instantaneous set selection.

This component filters the stereo input with an Nth order FIR. Order must be
specified as at least 5 and always odd (nTaps will be even). The Coefficient buffer
is [(Order+1)*nSets*2] in length and is kept in PM. A delay line of length
[(Order+1)*2] is held in DM.

StereoFIR2 works similarly to FIR2. See this component's description for more
information on coefficient set selection.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: Output = FIR (Input) (two channels)

Name Description Data Type

Input Stereo input Floating Point

Output Filtered stereo signal Floating Point

Order Number of taps minus 1. Must be odd.
Min=5

Integer (Static)

nSets Number of coefficient sets. Integer (Static)

SetSel Selects the coefficient sets to apply.
See “FIR2” on page 208.

Integer

>Coef Pointer to Coef buffer (PM)
See below for coefficient ordering.

Pointer

>Delay Pointer to delay buffer (DM). Pointer
Digital Filters

218 RPvdsEx
Coefficient
Ordering:

The coefficients must be shuffled into stereo sets as follows:

n = nTaps = Order + 1

BL(0), BR(0), BL(1), BR(1) … BL(n-1), BR(n-1)

For Example:

Order = 5

nSets = 1

Filter coefficients in logical order:

The coefficients must be shuffled and loaded as follows:

Multiple sets are appended logically as illustrated in FIR2.

Left B0 B1 B2 B3 B4 B5

1.0 1.1 1.2 1.3 1.4 1.5

Right B0 B1 B2 B3 B4 B5

2.0 2.1 2.2 2.3 2.4 2.5

BL0 BR0 BL1 BR1 BL2 BR2 BL3 BR3 BL4 BR4 BL5 BR5

1.0 2.0 1.1 2.1 1.2 2.2 1.3 2.3 1.4 2.4 1.5 2.5
Digital Filters

219
Exponents	and	Logs
The Exponent and Log components group includes typical log and exponential
functions as well as a linear-to-dB and dB-to-linear processes.

This group includes the following components:

• dBToLin

• Exp2

• Exp

• Exp10

• ExpN

• LinTodB

• Log2

• LN

• Log10

• LogN

dBToLin

Description: Converts dB input to linear.

Equation: OutputO = 10 ^ (Inputi / 20)

Name Description Data Type

Input Input Floating Point

Output Linear conversion of dB level. OutputO
= 10 ^ (Inputi / 20)

Floating Point
Exponents and Logs

220 RPvdsEx
Exp

Exp2

Exp10

Description: These processors compute exponent of indicated base.

Equation: FO = e ^ Fi or FO = 2 ^ Fi or FO = 10 ^ Fi

ExpN

Description: Computes natural exponent of the input with additional scalar values that alter the
input and the computed Exponential value.

Name Description Data Type

Input Input Floating Point

Output Exponential increase of input value
(base 2, Natural Log or base 10)

Floating Point

Name Description Data Type

Input Input Floating Point

Output Exp (a*Input)*b Floating Point

a Exponential scale factor alters input. Floating Point

b Output scale factor Floating Point
Exponents and Logs

RPvdsEx 221
Equation: Output = Exp (a * Input) * b

LinTodB

Description: Converts linear input to dB.

Equation: FO = 20 * Log10 (Fi)

Example: “PowerBand” on page 103.

LN

Log2

Log10

Description: These processors compute logarithm of indicated base.

Equation: FO = Ln(Fi) or FO = Log2 (Fi) or FO = Log10 (Fi)

Name Description Data Type

Input Input Floating Point

Output Linear conversion of dB level. Output =
20*Log10 (Input)

Floating Point

Name Description Data Type

Input Input Floating Point

Output Logarithm of input (Log 2, Natural Log
or log 10)

Floating Point
Exponents and Logs

222 RPvdsEx
LogN

Description: Computes natural log with scalars for changing base, and so forth.

Equation: Output = Ln (a * Input) * b

Name Description Data Type

Input Input Floating Point

Output Ln(a*Input)*b Floating Point

a Exponential scale factor alters input. Floating Point

b Output scale factor Floating Point
Exponents and Logs

223
Gating	Functions
The Gating Function components are used to gate the onset and offset of signals
with the specified envelope shape.

This group includes the following components:

• Cos2Gate

• LinGate

• LinRamp

Cos2Gate

Description: Gates signal with Cos2 of specified rise/fall. Functions as an enable line. The gate
will stay on as long as CTRL is HI. The rise time is the time it takes for the signal
to reach 90% of the maximum value. The fall time is the time it takes the signal to
reach 10% of the maximum value. The signal will start falling as soon as the CTRL
goes low.

Example: External Trigger, page 248.

Name Description Data Type

Input Input Floating Point

Output Gated Signal Floating Point

Trf Rise/Fall time in milliseconds Floating Point (Static)

Ctrl Opens gate on High closes on Low Logic
Gating Functions

224 RPvdsEx
LinGate

Description: Generates a linear gate with specified characteristics when triggered. Ctrl acts as an
enable line. The rise time is the time it takes for the signal to reach 90% of the
maximum value. The fall time is the time it takes the signal to reach 10% of the
maximum value. The signal will start falling as soon as the Ctrl goes low.

Example: Digital-to-Analog Delay, 190.

LinRamp

Description: Generates a linear ramp that begins at the Min value and goes towards the Max
value over the specified Rise/Fall Time.

Name Description Data Type

Input Input Floating Point

Output Gated Signal Floating Point

Trf Rise/Fall time in milliseconds Floating Point (Static)

Ctrl Opens gate on High closes on Low Logic

Name Description Data Type

Output Output value Floating Point

Min Minimum gate value Floating Point

Max Maximum gate value Floating Point

Trf Rise/Fall time in milliseconds between
Min and Max value

Floating Point

Ctrl Ramp starts on pulse high stays on
until pulse goes low.

Logic
Gating Functions

RPvdsEx 225
Example: Linear Ramp

File: Examples\LinRamp_ex.rcx

Default Device: RP2.1 Processor

Sampling Rate: 25 kHz

This example creates 20 ms long pulses with a 100 ms inter-pulse interval that is
used to ramp a tone on and off using LinRamp. The output from LinRamp is used
to control the amplitude parameter of the tone to gate it on and off.

Gating Functions

226 RPvdsEx
Gating Functions

227
Helpers
Helper components are used to simplify circuit design (HopFrom, HopTo), debug a
circuit (Graph, ParWatch), control a circuit while it is running (DataTable), or send
data between the PC and the RPX (ParTag, Graph, DataFile).

Note to RL2Stingray users: Remember to turn off Helpers before undocking the
Stingray.

This group includes the following components:

• DataTable

• DestinFile

• Graph

• HopFrom and HopTo

• Iterate

• MemoBox

• ParTag

• ParWatch

• ScriptTag

• SourceFile

DataTable

Description: The DataTable can be used to supply data to a parameter or Data type input.
Supports output of scalar values; Biquad, IIR, and FIR filter coefficients; and State
Machine values. The up and down arrows manually change the index that selects the
output data and are accessible using ActiveX controls or in RPvdsEx. Table values
are set before the chain is run.

To open the Quick Data dialog box, double-clicking the DataTable icon.
Helpers

228 RPvdsEx

The DataTable dialog box has a drop down menu for the format of the Table the
possible formats are

For most of the DataTable types a row index is generated for the number of rows
required in the data table. Each table can hold 1024 values. The values can be
divided between the number of rows and columns. For example a Table with 700
rows would have 1 column. While a table with 20 rows could have 51 columns. The
number of rows is controlled by a number box like the one below.

You select the Type/Format of the DataTable and the No. Rows or Coefficients in
the table and then reformat the table.

Changing the output of a Data Table

To change the Column number while the circuit is running click on the up/down
arrows on the DataTable icon from within RPvdsEx.

Type Format Function

Disabled No Data values

Scalar Single Floating point value

FIR Coef Coefficients generated for FIR filter

IIR Coef Coefficients generated for IIR filter

BIQ Coef Coefficients generated for Biquad filter

nRow Multiple rows

State Machine Generates Jump table for State Machine

Chan Map Channel Mapping for MCMap
Note: Channel Map starts with Channel 0
Helpers

RPvdsEx 229
The index of the Data Table can also be changed using an ActiveX control.

Example(s): FIR/Data Table, page 207.

DestinFile

Description: A DestinFile can transfer data from the RP Device to the PC. DestinFiles are
supported within RPvdsEx only. While designing the circuit, information like the exact
location of the file for storing the data (NAME), the number of data points to be
stored in the file (N), and the offset value for the data file (OS) are set in the
component.

If number of data points to be stored is not known, '0' can be entered. To append
the data to an existing data file 'Append' should be set to '1'.

The Data transfer is initiated by clicking the green arrow in the DestinFile component.

The DestinFile component can also be used with 16-Bit integer format ('. I16') data
if the 'Comp to 16' component is used to convert the data to 16-Bit integer format
before transferring it to the destination file. Data cannot be saved to a 'wav' file
using the DestinFile component.

Note: The save button for the DestinFile initiates a save for all components that share the
name of the specified DestinFile. If two components have the same name, the button
will save both simultaneously. To ensure only the intended component is saved, give
each DestinFile a unique name.

Name Description Data Type

Output Output values from a data table Any

Index Data table that values are read from. Integer

Name Description Data Type

Input Input to the 'destin file' 32-Bit Floating Point (F32),
16-Bit Integer (I16)

Name Name of the destination file with exact
path

String

N Number of points to be stored in the
data file ('0'if unknown)

Integer

O Offset value of the data file ('0' if no
offset)

Floating Point

Append Append='1' if you want to append the
data, '0' writes over existing data.

Integer
Helpers

230 RPvdsEx
Example: DestinFile - The example below collects 100000 points from an Analog channel input
when a software trigger is set. After the data is acquired the user can download the
signal information by clicking on the green arrow.

Graph

Description: Graph contents of buffer connected to Source. Graph works within RPvdsEx. The
arrows surrounding the graph are used to change the scale of the x and y axes.
The large arrow is used to manually update the graph. Double click to modify update
mode with one of the listed options.

Notice that the connector points to the Graph.
Helpers

RPvdsEx 231
Graph can graph all data types, as well as multiple channels. With a high speed
USB connection it is possible for graph to refresh the screen 10 times a second.

HopFrom

HopTo

Description: Allows graphical breaks in the RPvdsEx circuit, which allows one to build complex
circuits without overlapping lines. Used as a pair with one Hop From and one or
more HopTo. There are no accessible parameters. Double-click on Hop to access
the label.

Example: Hops

In this example a HopTo is connected to the output of the Biquad filter, and named
'Noise'. A separate HopFrom named 'Noise' is connected to a ScaleAdd component
and to a second DAC.

Name Description Data Type

UD Update of graph (Man,1,2,5,10) times
a second.

Static

DT Data Type (32-bit float, 32-,16-,8-bit
integer values)

Static

nChan Number of channels (1,2,4) Static

Source Pointer to DataBuffer Pointer
Helpers

232 RPvdsEx
Iterate

Description: An iteration box is a helper that greatly simplifies multi-channel circuit design. The
sub-circuit within the iterate box is duplicated a specified number of times. The
number of duplications is specified using the variable parameter x along with its start
and step size. Adding the character ‘x’ enclosed in braces ({x}) in the sub-circuit
will cause consecutive values from 1 to x to be inserted in place of the ‘x’ in each
duplicate.

For example:

If x = 16, start = 1 and step = 2, then there will be eight iterations and x will take
the values 1, 3, 5, 7,.., 13, and 15.

Using Iteration

An Equivalent Circuit Without Iteration

Helpers

RPvdsEx 233
Using iterations greatly simplifies circuit design. However, it does not reduce the
number of components. The number of components created by the circuits above is
identical.

In fact the circuits are equivalent and produce identical results when compiled.

The main advantage of using iterations is the manageability of the circuit. It makes
the circuit concise and easy to manage and edit. Each modification in the circuit
needs to be made only once.

When the iterate component is added, the user can drag the box boundaries around
any sub-circuit. All components and links must be either inside or outside the box.
Intersecting the box with a link is not permitted.

Note: When hops or parameter tags are used within the iterate box, they should typically
include the variable {x} in their labels. If the x variable is not used, a single object
such as a parameter tag will have multiple sources.

Using Variables

Iterations can make use of up to three variables, including the x variable and two
constants, a and b. The variables can be accessed and edited in the parameter box
which can be opened by double-clicking the top border of the iterate box. The
variables may be used in the labels of hops, parameter tags, or component
parameters.

Adding the character for any of the variables (x, a, or b) within braces (such as,
{a}, {b}, or {x}), will cause the value for the variable to be inserted in place of
the symbol in every iteration. With the variable x, such as {x+a}, the value of x is
incremented with each iteration. This is very useful when a channel offset number is
needed.

For example:

If x = 16, start = 1, step = 1, and a = 16, then (x+a) will take values 17, 18,
19,…, 31 and 32.

Using Iterations with MCToSing

Another powerful and efficient use of the iterate component is its use with the multi-
channel component MCToSing. Together these components can be used to extract
single-channel signals from a multi-channel signal. Each channel can then be
processed by single channel components. Ordinarily, a separate circuit segment would
be required to extract and process each signal. With the use of iterate, the user can
put the circuit for a single channel within the iterate box, and then put {x} in the
channel selector of MCToSing and in the labels of any parameter tags in the sub-
circuit.

Assigning an Iterate Box to More Than One Processor

Assigning a sheet that contains an iteration box to multiple processors allows the
user to build the iterate box with the associated circuitry within it, just once. When
this technique is used, the character d, within braces ({d}), must be added in the
circuit wherever the iterate box needs to be different for each processor. The letter
d will take the value corresponding to the processor to which it is assigned. Values
are 0, 1, 2, 3 and 4 for the main and auxiliary processors respectively.

For example:

If x = 16, start = 1, step = 1, a = 16, then {x + (d*a)} will take values:

1, 2, 3,…, 15, 16 in the first auxiliary processor
Helpers

234 RPvdsEx
17, 18, 19,…,31, 32 in the second auxiliary processor

33, 34, 35,…, 47, 48 in the third auxiliary processor

49, 50, 51,…, 63, 64 in the fourth auxiliary processor

Note: In this example, the four auxiliary processors are used to process 16 channels each.

Because the value associated with the main processor is 0, the formula used in this
example should not be used when the iteration box is assigned to multiple
processors.

The Duplication Information Dialog Box

After the circuit has been compiled a Duplication Information Dialog Box can be
displayed by right-clicking a component and clicking Duplication Info. The Duplication
Information dialog box displays several columns of information regarding the state of
the component and its parameters in each iteration of the circuit. Buttons at the top
of the dialog box allow the user to display information for each processor to which
the component might have been assigned.

The first four columns are always the duplication number (ItNo.), component name
(Name), component number (CmpNo.), and time slice (T.S.). The component
numbers displayed are offset for each auxiliary processor. Because each processor
can utilize up to 256 components, each processor is offset by a multiple of 256.
For example, the main processor uses component numbers 1-256, while the Aux-1
processor uses component numbers 257-512.

The standard columns are followed by columns for each of the components
parameters. This list of iterations and variable values are for user reference and
debugging.

For example, the duplication information for the MCToSing component from the
example below is shown here. Notice that the channel number (ChanSel) varies
from 1 through 16. In the example the iteration variable {x} was assigned to channel
number.

Similarly, the duplication information for the SortSpike2 component from the example
below is shown here. Because the variable {x} is not a part of any of the
parameters of the SerStore component, none of the columns have a list of
successive or changing values.
Helpers

RPvdsEx 235
Example: Iterations are commonly used with a MCToSing and single channel processing
components, to extract and process each channel of a multi-channel signal. When
MCToSing is used inside an iteration box, the variable x associated with the iteration
box can be assigned as the channel number. In the example below, FiltSig is a 16
channel signal, from which each channel is extracted and the RMS value is
calculated. This entire circuit is being iterated 16 times, that is, when the circuit is
compiled the iterated portion of the circuit will be duplicated 16 times. Each instance
will process a different channel. Notice that the variable x is included everywhere in
the circuit where distinctions need to be made between the channels (for example,
parameter tags). The output RMS signal is available as a new MC signal using the
MCFromHop component.

Name Description

Repeats The number of times the iteration is produced and the value of the
variable {x} within the circuit

Start Number where x starts

Step Number by which to increment x

a= A constant value which is inserted everywhere {a} is found in the
iterated circuit.
Also works with {x+a}, {x-a} and so on.

b= A constant value which is inserted everywhere {b} is found in the
iterated circuit. Also works with {x+b}, {x-b} and so on.
Helpers

236 RPvdsEx
MemoBox

Description: A MemoBox component is used to place text in the circuit. The MemoBox does not
affect the functionality of the circuit in anyway. It is useful for describing how the
circuit works (similar to comments in source code) and labeling parts of the circuit.

ParTag

Description: Parameter tags are used to control component Parameter variables and access data
from signal outputs, component parameters and data ports from a program while the
chain is running. To find out how parameter tags are used in programming see the
ActiveX Manual.

Parameter tags always point to the parameter component.

ParTagL and ParTagR function the same. The difference is for aesthetic purposes.

The maximum length of a parameter Tags name is 32 characters. Parameter tag
names are case sensitive.

Parameter tags function in Control Object Files (*.rco) that are accessed via
ActiveX controls or through DLL's.

Connecting to a Signal Input

Parameter tags cannot access signal inputs directly. Signal Inputs are found in the
top right-hand part of the components. The illustration below shows two correct
parameter connections and an incorrect one (red connection path).

To access a signal input use one of the following: ConstF, ConstI or ConstL. The
example below uses a constant Float to convert the parameter tag into signal output
that can be feed into a signal input.
Helpers

RPvdsEx 237
ParWatch

Description: Parameter Watch. When connected to the output of any component, it reports the
value of the component. Very useful for debugging circuits and checking cycle usage.
The default data type for ParWatch is floating point.

When connected to a parameter value that allows any type a floating point value will
be returned. This gives erroneous values for integer or logical values. To fix this
include an INT2FLT or TTL2FLT component between the output and the ParWatch.

Monitoring Output Values

This example shows how a parameter watch can be used to monitor the levels of
another component. Here it is reporting the RMS value.

ScriptTag

Description: A ScriptTag makes it possible to include scripting in RPvdsEx circuits. This powerful
new feature allows for complex automatic access to circuit elements via an embedded
basic language. It includes an editor and a debugger and has been extended to
include a number of powerful hardware access commands.

The code within the scripted tag is executed when the tag is accessed (read from
or written to). This is done in the same manner as accessing parameter tags with
ActiveX commands or through OpenEx.

Important: This component is primarily for TDT use. Comprehensive documentation and support
for end-user scripting is not available at this time.
Helpers

238 RPvdsEx
Example: This example sets the value of a ScriptTag named HPFreq with ActiveX commands.

setval = RP.SetTagVal(HPFreq,hp)

When the ScriptTag is written to, the internal code is run. The internal code may or
may not use the value ‘hp’ from the SetTagVal command. Therefore, if you only
need to trigger the code to run, the value for ‘hp’ is irrelevant.

Note: A ScriptTag given the reserved name ‘InitScript’ will execute its code when the
RPvdsEx circuit is run. This enables the user to set default values without having to
explicitly access the ScriptTag.

SourceFile

Description: A data file sends a file from the PC to the RP device. SourceFiles are supported
within the RPvdsEx application and with ActiveX controls. During the design of the
circuit using a SourceFile, the number of points to load from the file and the OS
(offset of the data file) are set. Once the circuit is running, the information from
the data file resides in a memory Buffer.

The data file can have any of the following data formats 32-Bit float, 32 and 16-
bit integer, ASCII, or WAV files. If using ASCII format, the file should contain a
column of numbers, one per line.

The memory buffer of the component that the SourceFile is connected to has access
to the file. In most cases a portion of the file is stored in a memory buffer. The
size of the buffer is dependent on the amount of memory allocated to the serial or
RAM buffer.

When a SourceFile is used with a serial or RAM buffer the write enable line must
be set to 0 (read from buffer).

When used within RPvdsEx, before the chain is run the user must define the file
name, number of points to read, and offset. With ActiveX it is possible to control
some of these variables dynamically.

In the example above, when the circuit starts the SourceFile is loaded and the serial
buffer plays the signal until it reaches the end of the buffer. The iCompare sends
Helpers

RPvdsEx 239
out a logical high while the buffer index is less than 2999 (buffers start at zero)
when it reaches 2999 StopPlay is set to 1.

Example(s): 3D Circle, page 98.

Name Description Data Type

Output Output value from a data file Any

Name File name and path (limited to 32
characters). Can have the following
data formats: 32-bit floating point 32-
and 16-bit floating point, ASCII file and
WAV file format.

String

N Number of points to read Integer

OS Offset value of data file Floating Point
Helpers

240 RPvdsEx
Helpers

241
Input/Output
Input and Output components handle input and output for circuits. Inputs include A/
D converters, TTL inputs, and Trigger inputs. Outputs include D/A converters and
TTL outputs. Use circuit components from this group to connect a circuit to the
physical world.

This group includes the following components:

• AdcIn

• BitIn

• BitOut

• DacOut

• StereoAdc

• StereoDac

• TimeStamp

• TrgIn

• WordIn

• WordOut

This group also includes the following components, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCAdcIn

• MCDacOut

• MCeStim

AdcIn

Description: Feeds the signal stream with A/D input channel specified. Converts 24 bit integer
input to floating point value. Also scaled and shifted to yield calibrated voltage level.
Input/Output

242 RPvdsEx
A parameter input allows users to dynamically change the channel number.

Equation: FO = ADC channel D1

Example(s): Scale and Add, page 53.

Butterworth Coefficients, page 151.

BitIn

Description: Feeds the signal chain with bit(s) from the digital input port. BitIn will logic 'OR' all
bits of the input port specified in Mask to produce a single logic high or low.

Standard integer values for addressing digital bits are provided in the table below.

Note: There is a two cycle delay when using the BitIn component.

Equation: LO = If (Digital Input Port && D1)

Example(s): If Digital Input Port = 7 and D1 = 3 Then LO = 1

Name Description Data Type

Output Output values from ADC channel Floating Point

Channel Parameter input to dynamically change
the channel number

Integer

Name Description Data Type

Output Logic value after bit-masked OR Logic

M Bit-Mask value for port; if any of those
port values are high BitIn goes high

Floating Point

Digital Bit Bit Mask (M=__)

Bit 0 1

Bit 1 2

Bit 2 4

Bit 3 8

Bit 4 16

Bit 5 32

Bit 6 64

Bit 7 128
Input/Output

RPvdsEx 243
If Digital Input Port = 8 and D1 = 3 Then LO = 0

BitOut

Description: Sets or clears bits of the digital output port based on the inputs logic level. All bits
specified in Mask will be set when the input is high else the bits will be cleared.

Standard integer values for addressing digital bits are provided in the table below.

Note: There is a three cycle delay when using the BitOut component.

Important:! Circuits that contain both BitOut and WordOut the Bitmasks cannot overlap. For
example, a circuit where the BitOut and WordOut both use bit 2 (BitMask=4) the
circuit will set the value based on the last component in the circuit.

Equation: Digital Output Port = Li masked by D1

Example(s): If Li = 1 and D1 = 3 then Digital Output Port bits 0 and 1 = 1

If Li = 0 and D1 = 3 then Digital Output Port bits 0 and 1 = 0

Name Description Data Type

Input Logic value Logic

M When logic goes high all port values
set with the bit-mask go high

Floating Point

Digital Bit Bit Mask (M=__)

Bit 0 1

Bit 1 2

Bit 2 4

Bit 3 8

Bit 4 16

Bit 5 32

Bit 6 64

Bit 7 128
Input/Output

244 RPvdsEx
DacOut

Description: Converts floating point signal input to integer value and sends to specified D/A
output channel. The value is scaled and shifted to provide calibrated voltage output.

A parameter feed allows users to change the channel output dynamically.

Equation: DAC channel D1 = Fi

Example(s): See “ScaleAdd” on page 118.

MCAdcIn

Description: This component is a multi-channel version of the AdcIn component. MCAdcIn feeds
the circuit with the multi-channel input from a high performance device, such as the
RX5. With the RX5, analog signals are digitized on a preamplifier and sent to the
base station via its fiber optic ports (Amp-A, Amp-B, Amp-C, and Amp-D). The
channel offset (ChanOS) can be used to specify acquisition channels, such as
channels from a specific amplifier. For example, to acquire signal data from Amp-B
you would set the channel offset to 17. The number of channels fed to the multi-
channel output is specified by nChan.

The minimum and maximum number of channels allowed in multi-channel signals is
4 and 256, respectively. However, the user must consider their hardware
configuration when setting the number of channels. For example, the maximum
number of analog input channels available on the Pentusa (RX5BA-5) is 64.
Therefore, the number of channels for the MCAdcIn component must not exceed 64
when using this device.

Also see “Working with Multi-Channel Components” on page 61.

Name Description Data Type

Input Input Floating Point

Channel # Changes the channel number
dynamically

Integer
Input/Output

RPvdsEx 245
Note: This component is for use with only high performance processor devices, such as
RXn or RZn. See the reference section for your device in the System 3 Manual for
more information.

MCDacOut

Description: This component is a multi-channel version of the DacOut component. MCDacOut
converts the floating-point values in the multi-channel input signal to integer values
and sends them to the specified analog output channels. The values are scaled and
shifted to provide calibrated voltage output.

The minimum and maximum number of channels allowed in multi-channel signals is
4 and 256, respectively. However, the user must consider their hardware
configuration when setting the number of channels. For example, the maximum
number of analog outputs available on the Pentusa is four. Therefore, the number of
channels for the MCDacOut must not exceed four.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Output Multi-channel output Floating Point

nChan Number of channels in output signal Integer (Static)

ChanOS Channel offset number Integer

Name Description Data Type

Input Multi-channel input Floating Point

nChan Number of channels required Integer (Static)

ChanOS Channel offset Integer
Input/Output

246 RPvdsEx
MCeStim

Description: This component is used to send digital stimulus waveforms to the IZ2 Stimulus
Isolator. The total number of channels configured for stimulation is defined in the
nChan parameter. A multi-channel input accepts stimulus waveforms and an eight-
channel output returns the actual stimulus voltage for monitoring. The MonBank
parameter selects which bank of eight channels to be monitored.

The logic input parameter VMode determines if the IZ2 acts as a constant current
(0) or voltage (1) source.

Use of the IZ2_Control macro is highly recommended as it provides all of the
necessary settings for the IZ2 Stimulator.

Note: This component is for use with the IZ2 Stimulus Isolator and RZ2 high performance
processor devices. See the System 3 Manual for more information.

StereoAdc

Name Description Data Type

Input Multi-channel floating point input stream
of stimulus waveforms

Floating Point

Output Eight channel floating point multichannel
monitor output

Floating Point

nChan Number of stimulus channels to send to
IZ2

Integer (Static)

VMode Configures the IZ2 to run in Voltage
Mode (1) or Current Mode (0)

Logic

MonBank Select which bank of eight channels to
monitor (integer, 0-15)

Integer

OpBits Not used at this time. Integer
Input/Output

RPvdsEx 247
Description: Generates stereo signal from channel 1 (left) and 2 (right) ADC inputs.

StereoDac

Description: Plays stereo input out of channel 1 (left) and 2 (right) DAC outputs.

TimeStamp

Description: TimeStamp is used with the Barracuda (RV8) and Multifunction Processor (RX6).
It is a submicrosecond accurate event-timer. On each tick of the sample clock the
TimeStamp waits for a trigger input. When the trigger goes high, the TimeStamp
component outputs a value equal to the number of microseconds since the start of
the sample period.

Name Description Data Type

Output Stereo formatted signal Floating Point

Ch Left channel input (must =1) Integer (Static)

Name Description Data Type

Input Stereo input Floating Point

Ch Left channel input (must = 1) Integer (Static)
Input/Output

248 RPvdsEx
The TimeStamp can detect triggers on a specified digital input line. The BitNum
parameter determines which digital input bit is monitored for triggers. A Reset line
(Rst) resets the TimeStamp and readies it for the next event. The Enable (Enab)
line enables the TimeStamp function (Yes=1 to enable). The Strobe out should be
connected to a latch or buffer operation to save the TimeStamp value (see example
below).

Note: On the RV8, bits 0-15 can be monitored for triggers. On the RX6, bits 0-3 can
be monitored.

TrgIn

Description: Feeds the signal chain with the specified trigger source. Use to feed system triggers
to various Logic inputs of counters etc. Trigger options set before run.

When the zTrigIn component is configured for a software trigger, the trigger will
remain high for one sample. However, if the zTrigIn is configured for the zBusA or
zBusB trigger the time high will depend upon the sample rate. For example, at 6
kHz the trigger will remain high for one sample, but at 25 kHz the trigger will
remain high for 5 samples.

If you wish to use the zBusA or zBusB trigger and need a single sample trigger
pulse, use an EdgeDetect component to detect the rising edge of the trigger before
feeding the trigger line to enable, reset, or other triggering parameters.

Name Description Data Type

Output Time in microseconds since the
beginning of the current sample period

Floating Point

BitNum The number of the digital input bit (0-
15 RV8, 0-3 RX6)

Integer

Rst Resets the timer value (logic high
allows it to run continuously)

Logic

Enab Enables the TimeStamp Logic

Strobe Pulses out a logical high for a tick of
the clock when component is triggered
(used to latch/store data)

Logic

Name Description Data Type

Output Pulses high when triggered Logic
Input/Output

RPvdsEx 249
Equation: LO = If (D1)

Example: External Trigger - This circuit uses an external trigger as an Enable line to gate a
tone on and off. When the external trigger goes high, the Cos2Gate will rise with a
10 ms rise time. When the external trigger goes low, the Cos2Gate will fall with a
10 ms fall time.

WordIn

Description: Feeds the chain with an integer representation of the digital input port. The digital
input port is logic 'ANDed' with the specified Mask and the resulting value is fed to
the signal chain.

Note: There is a two cycle delay when using the WordIn component.

Src External Trigger: Triggers RPX
through the trigger in port

zBus Trigger's A and B:
synchronizes Triggering to RPX
connected across chasis

Software Trigger 's#1-10: Sends a
trigger to an RPX device via a
software control on the PC

Static

Name Description Data Type

Name Description Data Type

Output Integer representation of digital input
port

Integer

M Bit-mask. Decimal value for desired
bits on port.

Integer
Input/Output

250 RPvdsEx
Equation: Io = Digital Port In 'AND' D1

Example(s): If Digital Port In = 7 and D1 = 3

Then Io =3

Also see “Working with WordIn - WordOut” on page 79.

WordOut

Description: Passes an integer value to the specified bits of the digital output port. Only bits
specified in the Mask will be affected on the output port. Bits not specified in the
Mask will be unaffected and can be used for other things.

Note: There is a three cycle delay when using the WordOut component.

Important:! Circuits that contain both BitOut and WordOut the Bitmasks cannot
overlap. For example, a circuit where the BitOut and WordOut both use bit 2
(BitMask=4) the circuit will try set the value based on the last component in the
circuit.

Equation: Digital Port Out = Ii for bits specified in D1

Example(s): If Ii = 7 and D1 = 3

Then Port Out =3

Also see “Working with WordIn - WordOut” on page 79.

RX Support for I/O Components

The tables below compare high performance processors support of various analog
input/output RPvdsEx components.

Name Description Data Type

Input Integer value digital representation of
Digital Output port.

Integer

M Bit-mask. Decimal value for desired
bits on port.

Integer (Static)
Input/Output

RPvdsEx 251
Analog Outputs

Analog Inputs

x supported

x* channels 1-16 access optical inputs, channels 128 and 129 access audio
inputs

x** component supported for access to optical inputs only (use AdcIn or StereoADC
for analog input BNCs)

† The StereoAdc component is limited to ADC channels one and two only.

Device DacOut

RX5 x

RX6 x

RX7 x

RX8 x

Device AdcIn MCAdcIn StereoAdc †

RX5 x x x

RX6 x* x**

RX7 x x x

RX8 x x x
Input/Output

252 RPvdsEx
Input/Output

253
Integer	Math
The Integer Math components provide mathematical functions for integer data, allowing
bitwise mathematical operations.

This group includes the following components:

• FromBits

• iAbsVal

• iAnd

• iBitShift

• iCompare

• iLimit

• iNot

• iOr

• iScaleAdd

• iSign

• iXor

• ToBits

This group also includes the following components, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCiAnd

• MCiOr

• MCiShift

FromBits

Integer Math

254 RPvdsEx
Description: Converts bit format to an integer value. See “ToBits” on page 261.

Equation: I1 = L0-7 Bit-mask

Example(s): B0=1,B1=1,B2=1,B3=0,B4=0,B5=0,I1=7

B0=1,B1=0,B2=0,B3=0,B4=1,B5=1,I1=49

B0=1,B1=1,B2=1,B3=1,B4=1,B5=1,I1=63

iAbsVal

Description: Computes the absolute value of the signal.

Equation: Io = |Ii|

Example(s): AbsVal (-2) = 2

AbsVal (2) = 2

iAnd

Description: Bitwise AND function. Bitwise AND of integer input and N.

Name Description Data Type

Inputs Input Logic

Output Integer calculated from Logical Inputs Integer

Rst Resets output to zero Logic

Name Description Data Type

Input Input Integer

Output Absolute value of Input Integer

Name Description Data Type

Input Input Integer
Integer Math

RPvdsEx 255
Equation: IO = II AND N1

Example(s): 7(0000 0111) AND 3 (0000 0011)= 3

7(0000 0111) AND 9 (0000 1001)= 1

iBitShift

Description: Bit shifts input by N bits. Positive N bit shifts to the left negative shifts to the right.

Equation: IO = I1 * 2^N1

Example(s): N=1; iBitShift (20) = 40

iCompare

Description: Compares input to K using specified Test and reports TRUE or FALSE as logic High
or Low respectively. Test can be EQ: Equal; NE: Not Equal; GT: Greater Than; LT:

Output Bitwise AND function Integer

N Decimal value for doing Bitwise
conversion

Integer

Name Description Data Type

Name Description Data Type

Input Input Integer

Output Input shifted by N bits Integer

N Decimal value for doing Bit shift Integer
Integer Math

256 RPvdsEx
Less Than; GE: Greater than or Equal to; LE: Less than or equal to. Can be
thought of as an If... statement.

Equation: IO = iCompare (Ii Test K)

Example(s): K = 20; Test Eq; When Ii = 20, Io=1, otherwise Io=0;

K=20; Test GT; When Ii > 20, Io=1; otherwise Io=0;

iLimit

Description: Limits the signal to the Maximum and Minimum levels specified. If the input signal is
greater than the Max value then the signal out is the Max value. If the input signal
is less than the Min value then the signal out is the Min value. If the input signal
is between the Min and Max values it is passed through as the signal output without
change.

Important:! If Max is defined as a value less than the defined Min value, the output
will always be the defined Min, regardless of the input value.

Equation: If Fi > D1 then FO = D1

Else If D2<= Fi <= D1 then FO = Fi

Else If Fi < D2 then FO = D2

Name Description Data Type

Input Input Integer

Output One if test is true 0 if test is false Logic

K Test value Integer

Test Compare type: EQ: Equal; NE: Not
Equal; GT: Greater Than; LT: Less
Than; GE: Greater than or Equal to;
LE: Less than or equal to

Static

Name Description Data Type

Input Input Integer

Output Value no less than Min and no greater
than Max

Integer

Max Maximum input value Integer

Min Minimum input value Integer
Integer Math

RPvdsEx 257
iNot

Description: Inverts bits of integer value.

Equation: OutputO = NOT (InputI)

Example(s): NOT (0x000F) = 0xFFF0

NOT(7)=-8

iOr

Description: Bitwise OR function.

Equation: OutputO = Inputi OR N1

Example(s): 7(0000 0111) OR 3 (0000 0011)= 7

7(0000 0111) OR 9 (0000 1001)= 15

iScaleAdd

Name Description Data Type

Input Input Integer

Output Bit-Inverted value of Input Integer

Name Description Data Type

Input Input Integer

Output Bitwise OR function Integer

N Decimal value for doing Bitwise OR Integer
Integer Math

258 RPvdsEx
Description: Multiply signal by scale factor and add shift factor. The SF parameter can be used
to apply a simple scalar, or modulate a signal. The Shift parameter can be used to
place a DC shift on a signal or add two signals together.

Equation: Output = (Input* SF) + Shift

iSign

Description: This component determines the sign of the input.

Equation: If Ii < 0 then IO = -1

Else If Ii = 0 then IO = 0

Else If Ii > 0 then IO = 1

iXor

Description: Output is changed based on the bit-form of the parameter value using an exclusive
OR bit mask. Exclusive OR only includes those bit-values that have a single 1. See
the examples below.

Name Description Data Type

Input Input Integer

Output Scaled plus add value of Input Integer

SF Scale factor (multiply) Integer

Shift DC offset adds a value after SF Integer

Name Description Data Type

Input Input Integer

Output Sign of Input value (-1,0,1) Integer

Name Description Data Type

Input Input Integer

Output Bitwise XOR function Integer

N Decimal value for doing Bitwise OR Integer
Integer Math

RPvdsEx 259
Equation: OutputO = Inputi IXOR (Np)

Example(s): 7(0000 0111) IXOR 1 (0000 0001) = 6

7(0000 0111) IXOR 7(0000 0111) = 0

14(0000 1110) IXOR 7 (0000 0111) = 9

MCiAnd

Description: Multi-channel bitwise AND function. Bitwise AND of integer input and N.

Equation: IO = II AND N1

Example(s): 7(0000 0111) AND 3 (0000 0011)= 3

7(0000 0111) AND 9 (0000 1001)= 1

MCiOr

Name Description Data Type

Input Multi-channel Input Integer

Output Bitwise AND function Integer

N Decimal value for doing Bitwise
conversion

Integer
Integer Math

260 RPvdsEx
Description: Multi-channel bitwise OR function.

Equation: OutputO = Inputi OR N1

Example(s): 7(0000 0111) OR 3 (0000 0011)= 7

7(0000 0111) OR 9 (0000 1001)= 15

MCiShift

Description: Bit shifts the multi-channel input by N bits. Positive N bit shifts to the left negative
shifts to the right.

Equation: IO = I1 * 2^N1

Example(s): N=1; MCiShift (20) = 40

Name Description Data Type

Input Multi-channel Input Integer

Output Bitwise OR function Integer

N Decimal value for doing Bitwise OR Integer

Name Description Data Type

Input Multi-channel Input Integer

Output Inputs shifted N bits Integer

N Decimal value for doing Bit shift Integer
Integer Math

RPvdsEx 261
ToBits

-

Description: Converts the first 6 bits of an Integer to a series of logical outputs. Values greater
than 63 and less than 0 may give unexpected results. See “FromBits” on
page 253.

Note: The b0 output is a primary output on the ToBits component. The b1 through b5
outputs are secondary. This may cause a problem when connecting b1 through b5 to
logic inputs requiring a primary input (e.g. And, Or etc.). Use a ConstL between
the two components to solve this problem.

Equation: Outputi = Input1 Bit-mask

Example(s): Input1=7 B0=1,B1=1,B2=1,B3=0,B4=0,B5=0

I1=2001 B0=1,B1=0,B2=0,B3=0,B4=1,B5=0

I1=-1 B0=1,B1=1,B2=1,B3=1,B4=1,B5=1

Name Description Data Type

Input Input Integer

Outputs Logical values from Integer input Integer

Rst Resets outputs to zero Logic
Integer Math

262 RPvdsEx
Integer Math

263
Multi‐processor
The Multi-processor components are designed for use with high performance devices,
such as RXn or RZn. They are used to pass circuit signals between multiple
processors on a single device. Signals are sent and received between DSPs via
specialized hardware and these components.

This group includes the following components:

• DspAssign

• MCzHopIn and MCzHopOut

• MCzHopPick

• zHopIn and zHopOut

For the RZ2 only:

• MCPipeIn and MCPipeOut

• PipeIn and PipeOut

• PipeSource

Users should be aware of the delays associated with each type of multi-processor
components and keep in mind the limitations associated with them.

See “Designing Multi-processor Circuits for the RZ2” on page 73, for more
information on multi-processor limitations and best methods.

DspAssign

Component Type Device Type Limits Delays

zHops RXs 126 Pairs 1 sample

RZs 126 Pairs 2 samples

Pipe Components RZ2 (< 50 kHz) 256 Channels 2 samples

RZ2 (> 50 kHz) 128 Channels 2 samples
Multi-processor

264 RPvdsEx
Description: The DspAssign component is used to designate a section of an RPvdsEx sheet to
run on a processor other that the one assigned to the RPvdsEx sheet. Paired with
RPvdsEx macros, this component enables many multi-processor circuits to be
displayed in a single sheet view. Similar to the Iterate component, components
cannot intersect the DspAssign boundary.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn, but users must be familiar with the number of DSPs available in their
device and only assign sheets to those DSP.

MCPipeIn

MCPipeOut

Description: These components allow multi-channel transfer of data between processors within an
RZ device. The components are used to either get data from or put data onto the
RZ’s Data Pipe Bus. Once the data is on the bus it is available to the other DSPs
in the system. The source data available to MCPipeIn or from MCPipeOut is
configured using the PipeSource component. There is a two cycle delay when
transferring signals using the MCPipeIn and MCPipeOut. (This is accounted for in
TDT developed macros)

For single channel transfer between processors on an RZ, use PipeIn and PipeOut.

Note: The PipeSource component must be included on any DSP that uses PipeIn, PipeOut,
MCPipeIn, or MCPipeOut. Some macros, like the RZ2_Input_MC allow declaration of
a PipeSource component, so that a separate PipeSource component is not needed.

Note: These components are for use with the RZ2 processor devices. Do not use them
with the RZ5, RZ6, RXn or single processor devices. These components will only
appear in the component list when a multi-processor device is selected in the
hardware setup dialog box.

Name Description Data Type

DSP Target DSP Static

Core (QZDSP
only)

Target Core Static
Multi-processor

RPvdsEx 265
MCPipeIn

MCPipeOut

Example: MCPipeIn/MCPipeOut

Processor 1

The RZ2_Input_MC macro acquires data directly from the RZ2’s fiber optic port.
Signals are carried from the PZn BioAmp across a fiber optic cable to the Optical
Port and routed by the I/O interface to the Pipe Bus. Data on the Pipe Bus is
available to all DSPs in groups of 128 channels via the Pipe components. The
RZ2_Input_MC macro combines several Pipe components to feed the circuit with the
first 16 channels of data (nChan=16) beginning with channel 1(ChanSel=1). The
RZ2_Input_MC macro handles all required data scaling when acquiring data from the
PZn BioAmp. The data is filtered and then MCPipeOut makes the filtered multi-
channel signal available on the pipe bus.

Note: Each DSP that includes any of the Pipe input or output components must also
include the PipeSource component. This is handled internally by the RZ2_Input_MC
macro.

Name Description Data Type

nChan Number of channels of information
being accessed

Integer (Static)

ChanSel First channel number Integer

Output Multi-channel output Any

Name Description Data Type

Input Multi-channel input Any

nChan Number of channels of information
being accessed

Integer (Static)

ChanSel First channel number Integer
Multi-processor

266 RPvdsEx
Processor 2

On the second processor PipeSource is used to acquire the data that DSP-1 put on
the Data Pipe Bus. MCPipeIn routes the data for storage. Alternatively, this example
can use the RZ2_Input_MC macro in place of the PipeSource and MCPipeIn
components.

MCzHopIn

MCzHopOut

Description: These components allow multi-channel transfer of data between processors within a
device. They enable the user to distribute processing tasks across multiple processors
within a multi-DSP device, such as the any RXn or RZn. There is a one sample
delay when transferring signals using the MCzHopOut, MCzHopIn, or MCzHopPick on
an RX or two samples when using an RZ.

These components work together. Adding an MCzHopIn without the corresponding
MCzHopOut/ (or vice versa) will produce an error. Each MCzHopOut must have a
unique label. The hop label can be accessed and edited by double-clicking the
component. Multiple MCzHopIns can be used with a single MCzHopOut.

Note: The MCzHopPick can be used in place of an MCzHopIn, to access a single channel
from a MCzHopOut.

Use zHopIn and zHopOut for single channel transfer between processors.
Multi-processor

RPvdsEx 267
Note: An RPvdsEx circuit can include a maximum of 126 zHop pairs. One zHop pair is
counted for each single zHop pair and for each channel of an MCzHop pair.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCzHopOut

MCzHopIn

Example: MCzHops

Processor 1

This circuit filters all 64 A/D inputs and then makes them available to any of the
processors on the device.

Processor 2

Name Description Data Type

Input Multi-channel input Any

nChan Number of channels of information
being accessed

Integer (Static)

Name Description Data Type

nChan Number of channels of information
being accessed

Integer (Static)

ChanSel First channel number of nChan
channels in the multi-channel signal

Integer (Static)

Output Multi-channel output Any
Multi-processor

268 RPvdsEx
On a second processor the multi-channel signal is retrieved and each signal is
scaled then output as a multi-channel signal. The ScaledMC HopOut is a helper that
carries the signal to another part of the circuit on the same processor.

MCzHopPick

Description: This component allows transfer of data between processors within a device, with the
added advantage of being able to pick one channel to retrieve from a multi-channel
signal. A MCzHopOut with the same label must also be added to the RPvdsEx file.
The label can be accessed and edited by double-clicking the component.

There is a one sample delay when transferring signals using the MCzHopPick on an
RX or two samples when using an RZ.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Example: MCzHopPick

Processor 1

This circuit filters 16 A/D inputs and then makes them available to any of the
processors on the device.

Processor 2

Name Description Data Type

ChanNo Channel from which info is required Integer

Output Single-channel output Any
Multi-processor

RPvdsEx 269
This circuit picks channel 1 out of the 16 channels of filtered signals and plays it
from the analog output to allow the user to monitor any one of the recording
channels. The channel number can be selected dynamically via the ChanSelect
parameter tag.

PipeIn

PipeOut

Description: These components allow single-channel transfer of data between processors within
the RZ2 processor. The components are used to either get data from or put data
onto the RZ2’s Data Pipe Bus. Once the data is on the bus it is available to the
other DSPs in the system. The source data available to PipeIn or from PipeOut is
configured using the PipeSource component. There is a two cycle delay when
transferring signals using the PipeIn and PipeOut. (This delay is accounted for in
TDT Developed macros.)

For multi-channel transfer between processors on an RZ2, use MCPipeIn and
MCPipeOut.

Note: The PipeSource component must be included on any DSP that uses PipeIn, PipeOut,
MCPipeIn, or MCPipeOut. Some macros, like the RZ2_Input_MC allow declaration of
a PipeSource component, so that a separate PipeSource component is not needed.

Note: These components are for use with the RZ2 processor device. Do not use them with
the RZ5, RZ6, RXn or single processor devices. These components will only appear
in the component list when a multi-processor device is selected in the hardware
setup dialog box.

PipeIn

Name Description Data Type

ChanSel Channel number Integer

Output Single-channel output Any
Multi-processor

270 RPvdsEx
PipeOut

Example: See “MCPipeIn” on page 264.

PipeSource

Description: This component allows the user to configure the source data available to the DSP
from the Data Pipe Bus and must be included on any DSP that uses PipeIn,
PipeOut, MCPipeIn, or MCPipeOut.

Two parameters, Pipe[A] and Pipe[B] are used to select the source data. Pipe[A]
represents channels 1-128 and Pipe[B] represents channels 129-256. The source
data for each pipe can be the first or second 128-channel block of data from any
of the DSPs in the system or the Z-Series BioAmp via the RZ2’s 256-channel fiber
optic port. Double-clicking on the component brings up the Edit Component
Parameters dialog to change the settings.

Note: This component is for use with the RZ2 processor device. Do not use them with the
RZ5, RZ6, RXn or single processor devices. The component will only appear in the
component list when a multi-processor device is selected in the hardware setup
dialog box.

RZ QZDSP processors rely on core-A for communication with the Pipe Bus and any
associated optical port. When accessing the Pipe bus from a QZDSP, the PipeSource
component must be placed on each of the cores, but only the PipeSource on core-
A defines the actual source while the source in the other PipeSource components is
ignored. The PipeSource component must be on each core whether it’s using a pipe
input, output, or both.

Pipe bus output is limited to 256 channels per QZDSP card. Users can split up
groups of channels to assign to different cores, but should not assign 256 channels
to more than one core.

Example: See “MCPipeIn” on page 264.

Name Description Data Type

Input Single-channel input Any

ChanSel Cannel number Integer

Name Description Data Type

Pipe[A] Pipe data source for channels 1-128 Static

Pipe[B] Pipe data source for channels 129-256 Static
Multi-processor

RPvdsEx 271
zHopIn

zHopOut

Description: These components allow single channel transfer of signals between processors within
a device. They enable the user to distribute processing tasks across multiple
processors within a multi-DSP device, such as the RX5. There is a one sample
delay when transferring signals using the zHopOut and zHopIn on an RX or two
samples when using an RZ.

These components work together. Each zHopOut must have a unique label. Multiple
zHopIns can be used with a single zHopOut. Adding a zHopIn without the
corresponding zHopOut (or vice versa) will produce an error.

The hop label can be accessed and edited by double-clicking the component. For
multi-channel transfer between processors, use MCzHopIn and MCzHopOut.

Note: An RPvdsEx circuit can include a maximum of 126 zHop pairs. One zHop pair is
counted for each single zHop pair and for each channel of a MCzHop pair.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

zHopIn

zHopOut

Example: ZHops - In this example zHopOuts are used on Sheet 1 to transfer the trigger,
reset, and iTime lines to Sheet 2, which has been assigned to another processor.
On sheet two, the trigger lines are used to enable data storage. Notice that in this
example, HopOut and HopIn (helpers) are used in coordination with the zHops.
Keep in mind that, unlike the zHops, the helpers (HopIn and HopOut) do not use
processor cycles or incur delays, so they can be used liberally. When multiple hops
are needed on a single processor, using HopIn and HopOut helps to reduce the
overall number of components in a circuit.

Sheet 1 - Main Processor

Name Description Data Type

Output Single channel output Any

Name Description Data Type

Input Single channel input Any
Multi-processor

272 RPvdsEx

Sheet 2 - Auxiliary Processor
Multi-processor

273
NeuroAnalysis
The NeuroAnalysis components group includes the following components,
developed primarily for neurophysiology applications:

• BinRate

• FindSpike

• InstRate

• SortSpike

• SortSpike2

• SortSpike3

This group also includes the following components, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• SampSubtract

• SortBin8

• SortFlag16

• Tetrode

BinRate

Description: The BinRate component allows users to store or view spike rates. The Strobe output
of a spike sorting component (or other pulse) is fed to the BinRate component’s
input to indicate a spike has occurred. At each falling edge of the input, the
component uses the value of the SortCode parameter (an integer ranging from 0-
3) to select and increment the count value of one of four internal bins. Each time
reset goes high, the bin counts are latched to the output and then reset to zero.
The output is a 32-bit integer with each byte representing a bin. The first eight bits
store the values for SortCode 0 the next eight bits for SortCode 1 and so on.

Note: If the BinRate component receives more than 127 pulses in any bin in one interval,
it will give erroneous results for that interval, as well as for all following intervals.
NeuroAnalysis

274 RPvdsEx
TDT recommends using an update rate of 125 ms or less for the BinRate
component.

The Bits output takes on one of four values (1, 2, 4, or 8) corresponding to the
SortCode value at the falling edge of the input pulse. For example, if the SortCode
is set to 3, the Bits output will be the integer 8 for one sample at the falling edge
of the input.

Anomalies: BinRate records one spike during each of the first two samples of running the circuit.
The easiest work around is to ignore the first two spikes counted. However, if the
circuit permits, you can add the circuitry shown in the example below to automatically
reset the BinRate to ignore the two erroneous spikes.

When a circuit is run, the Bits output will show a spike being detected, that is the
output will go to 1, 2, 4 or 8 for the first and second sample clock tick, irrespective
of whether a pulse came in or not. If the output is being used, it can be ANDed
with NOT OneShot.

Example: BinRate

In the example below, the BinRate component counts the number of spikes detected
by SortSpike2, based on the SortCode value of each spike. The strobe output of
SortSpike2 triggers the input of the BinRate component and the SortBits output is fed
to the SortCode input.

Name Description Data Type

Input Pulse, usually indicating the a spike
event occurred
The pulse can be of any width, only
the falling edge is detected as a pulse

Logic

Output A 32-bit integer, with each 8-bit byte
representing a count of spikes that
were sorted into a bin

Integer

SortCode An integer value representing a
SortCode and ranging from 0 – 3

Integer

Reset Latches counts to output then resets
counts

Logic

Bits One of four values (1, 2, 4, or 8)
corresponding to the SortCode value at
the falling edge of the input
Remains 0 at all times except at the
falling edge of a pulse received at the
Input port

Integer
NeuroAnalysis

RPvdsEx 275
A PulseTrain2 resets the BinRate output once every two seconds. Therefore, the
counts represent the number of spikes in each bin during a two second interval. The
BinRate output is split into the counts for each bin by the SplitTo8 component.

The Bits output is used to light an LED every time a spike with the SortCode 0
(unsorted spikes in OpenEx) is detected. The components in the red blocks are
temporarily needed for bugs.

FindSpike

Description: FindSpike detects spikes based on their deviations from the noise of the system. An
RMS (root mean square) of the signal is calculated for a given time interval
(Tau). Signal voltages that deviate by more than ThrLo and less than ThrHi
deviations from the RMS are detected. The detector stores the waveform (nWidth in
size) centered around its peak. The waveform along with a timestamp can be stored
in a memory buffer.
NeuroAnalysis

276 RPvdsEx
Example: FindSpike

In the example above an analog input is sent to the FindSpike component. A TSlope
is used to generate a timestamp. Data is saved to a SerStore (Note: the Strobe
output is connected to the WrEnab line of the SerStore). Parameter tags allow
ActiveX controls to access the spike data and spike number from the buffer. This
FindSpike saves 39 points of data plus a timestamp tag (nWidth=40).

The Rst line allows the user to reset the FindSpike to the start of a candidate spike.
This allows acquisition in a sweep based mode to only include spikes from the start
of the sweep.

Name Description Data Type

Input Input Floating Point

Output Spike waveform of nWidth samples Floating Point

nWidth Number of samples stored Integer (Static)

Tau Time length in milliseconds for
calculating the RMS of the noise

Floating Point (Static)

ThrLo Lower threshold (in deviations from
RMS) for detecting a spike

Floating Point

ThrHi Upper threshold (in deviations from
RMS) for detecting a spike

Floating Point

Rst Resets the FindSpike so that candidate
spikes are only acquired during an
acquisition period

Logic

Tag Tag some form of identifier for the
waveform, can be a time stamp or
counter value

Any

RMS^2 Square of the RMS (Root Mean
Square value) of the noise, output
value can be stored to a buffer

Floating Point

Strobe Goes high for the length of the sample
when a spike is detected

Logic

>Data Data Port, allows access to the
memory buffer

Pointer
NeuroAnalysis

RPvdsEx 277
InstRate

Description: The InstRate (instantaneous rate) component acquires TTL inputs and converts each
TTL pulse to a large floating point value. This value is then filtered through a low
pass filter. The filtered value is then fed back into the InstRate component. Based
on the input rate it either increases the filter (higher spike rates) or decreases the
filter (lower spike rates) by a set value (FcFact) this value is then sent out the
FcFeed parameter output to the input of the filter coefficient generator (Fc).
Additional component features allow the signal to be generated in the falling edge of
the TTL input or to use a SortCode.

Example: Instantaneous Rate - The example below shows how the InstRate component could
be used to find the firing rate of neural activity. The logical output of the SortSpike
Strobe is fed into the InstRate component where it is converted to a floating point
value. A parameter tag allows ActiveX controls to access the firing rate from the
Biquad.

Note: A loop warning will be displayed when the circuit is compiled; disregard this warning.

Name Description Data Type

Input Input Logic

Output Floating point number representing the
raw instant rate

Floating Point

SortCode Sort code value assigned to the
waveform represented by the logical
input

Integer

UseFall Sets the edge of the waveform used Logic

SortMach Sort Code value for which firing rate is
desired

Integer

FcFact Frequency feedback factor Floating Point

FcMin Frequency feedback minimum Floating Point

FcReturn Frequency feedback minimum Floating Point

FcFeed Adjusted filter cutoff frequency based on
measured spike rate

Floating Point
NeuroAnalysis

278 RPvdsEx

SampSubtract

Description: The SampSubtract component is useful for removing artifacts in the signal that are
generated in a predictable manner (such as an artifact from electrical stimulation).

In order to remove the artifact, a signal snippet is acquired and added to a buffer
during each occurrence of the artifact. A weighted fraction of the summed signal
snippets is subtracted from the signal as each new artifact occurs. Over-time the
artifact will be removed from the signal with increasing accuracy and without reducing
the integrity of the signal of interest.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Input signal Floating Point

Output Filtered signal Floating Point

nWidth Size of buffer for the weighted sum Static
NeuroAnalysis

RPvdsEx 279
Accurate acquisition and removal of the artifact can only occur if the onset and
length of the artifact are known and predictable. The Sync line is used to trigger
acquisition, summing, and subtraction. So, the Sync input should be synced with the
generation of the stimulus, and its duration should be set to the duration of the
stimulus. Each time the Sync input goes high, SampSubtract acquires the snippet of
signal for the duration of Sync pulse and calculates the sum of snippets that is then
weighted (multiplied by a fraction related to the Scale Factor) and subtracted from
the input signal the next time that Sync goes high. The calculation of the weighted
sum is related to the Scale Factor but also depends on the amplitude of the
summed snippets.

Note: A delay may be required before the Sync input goes high to compensate for the
time taken for the electrical stimulus to go through the outputs, into the brain, and
back into the amplifier as an artifact.

When the circuit is run, the artifact will be gradually reduced as the weighted sum
gradually increases. Hence, the signal will undergo a training period before the
artifact rejection reaches an optimum level. The higher the value of Scale Factor, the
shorter the training period, and greater the chance of the useful part of the signal
leaking into the weighted sum. Generally, a scale factor of 0.01 to 0.05 will provide
good rejection results.

If the scale factor is set to 0, the summing stops, but the current weighted sum
remains in the buffer, and continues to be subtracted from the signal. Setting the
scale factor to 0 after the initial training period will continue the subtraction, but stop
further growth of the subtracted signal reducing the likelihood that the useful signal
around the artifact will be affected.

The nWidth parameter sets a predetermined buffer size to hold the weighted sum. It
should be made sufficiently large to hold the summed signal.

The >Data pointer provides access to the weighted sum.

When the EnabSub input is high, the subtraction is enabled; when low, subtraction
is disabled and the signal passes to the component output unaltered.

Sync Enables acquisition of artifact signal and
triggers summing and subtraction. The
Sync input should remain high for the
duration of the artifact.

Logic

EnabSub Enables subtraction when high and
disables the subtraction, letting the
signal pass unaltered, when low

Logic

SF Scale Factor Floating Point

>Data Memory buffer for the weighted sum Pointer

Name Description Data Type
NeuroAnalysis

280 RPvdsEx
SortBin8

Description: The SortBin8 component is useful for counting the number of sort codes per channel
in a multi-channel signal. The input of the SortBin8 component is typically a multi-
channel integer representing the sort code value for each channel. The output for
each channel is a single 32-bit integer. Each byte in the integer contains the count
for a single sort code making a total of four sort codes (1, 2, 3, and 4).

Sort Code:

On a rising edge of SyncIn, the sort code count for all channels is reset to 0. At
this time the Strobe output simultaneously goes high for one sample to indicate that
the count has been reset.

For example, suppose there are 7 spikes with sort code 1 and 9 spikes with sort
code 2 since the last SyncIn. The ouput will be 231110 or:

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

4 3 2 1

0000 0000 | 0000 0000 | 0000 0000 | 0000 0000

MSB LSB

4 3 2 1

0000 0000 | 0000 0000 | 0000 1001 | 0000 0111

MSB LSB

Name Description Data Type

Input Multi-channel input signal Integer

Output Sort code count. This is a 32-bit
integer value with each of the four sort
bins represented by a single byte out
of the 32-bit value.

Integer

nChan Number of channels to store sort
counts for.

Integer (Static)

SyncIn Resets the count value for all channels
to 0

Logic

Strobe Goes high for a single sample when
the count is reset.

Logic
NeuroAnalysis

RPvdsEx 281
SortFlag16

Description: SortFlag16 is useful for monitoring sort code activity over a period of time. The
SortFlag16 component flags two sort codes for each channel based on its multi-
channel input signal (which will most likely come from a SpikePac power macro sort
code output). SortFlag16 polls each input channel for a value of 1 or 2, if either
value exists on any channel, SortFlag16 sets the corresponding flag bit to a logic
high (1). On the rising edge of SyncIn, SortFlag16 latches a 32-bit integer value
which contains two flag bits for each channel (each flag represents a sort code of
1 or 2).

The SortFlag16 output structure for the 32-bit integer is shown below.

Channel Sort code

After SyncIn has detected a rising edge it resets the internal flags for each channel.

For example, you are sending a rising edge to the SyncIn input every 10 ms. A sort
code value of 1 and 2 are sent to channels 1, 3, and 5 between the last rising
edge of SyncIn. On the next rising edge of SyncIn, the output will be 81910 or:

Notice that the sort code flags (1 and 2) are set for channels 1, 3, and 5.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

162 161 ... 32 31 22 21 12 11

0 0 ... 0 0 0 0 0 0

MSB LSB

0000 0000 | 0000 0000 | 0000 0011 | 0011 0011

MSB LSB

Name Description Data Type

Input Multi-channel input signal Integer

Output 16-channel sort code flag. This is a
32-bit integer value containing two sort
code flags (1 and 2) for each
channel.

Integer

nChan Number of channels to store sort code
flags for. The maximum is 16

Integer (Static)

SyncIn On a rising edge, outputs the current
32-bit flag and resets the flag values
for all channels to 0

Logic
NeuroAnalysis

282 RPvdsEx
SortSpike

Description: The SortSpike component sorts spikes using a time/voltage window discriminator. The
threshold voltage (window) is selected with the ThrLo and ThrHi parameters. When
a candidate waveform is detected it is tagged with the value from the Tag input and
a sort value is assigned (SortBits). The data output contains the Tag value
(timestamp), sort value (sort code) and the waveform. The waveform is stored
with the peak of the spike centered in the data buffer. For more information see the
OpenEx Manual.

Organization of Waveform Data

Sample 1 = Tag Value (Timestamp)

Samples 2: (n-1) = Waveform

Sample n = Sort code

Sample n/2 = Waveform Peak

For a SortSpike with nWid/2 = 16 the number of waveform samples would be 32-
2 (Tag and SortBit) or 30 points of signal waveform. The peak would be at
sample 15.

This component is used primarily by TDT turnkey applications such as OpenEx. Users
should read the description of how to use SortSpike in OpenEx. A description of how
to use the component with custom codes is described below.

Setting the Time‐Voltage and Sort Codes via Custom Software

The SortSpike component uses information stored in a coefficient vector to determine
the time-voltage and sort code values.

Organization of the coefficient vector is as follows:

The coefficients are organized into a vector array which is 3 times the length of the
waveform. Three consecutive indices in the vector are associated with a single
sample along the waveform. These three values define a time-voltage window
discriminator or ‘hoop’ that a given waveform may pass through.

This means that vector indices [0], [1], and [2] represent the three time-voltage
hoop characteristics for the first sample of the waveform.

The three values used to define a hoop are the Center Voltage, Half-Height Voltage,
and Sort Code.
NeuroAnalysis

RPvdsEx 283
The Center and Half-Height Voltages are specified in Volts while the Sort Code is
specified as a positive integer from 1 to 30.

Note: If the incoming waveform passes through more than one hoop, the hoop in which
the waveform passes closest to the Center Voltage determines which hoop’s Sort
Code gets assigned.

Samples not containing hoops must have all three hoop characteristics zeroed.

For Example, a waveform containing 8 samples will use a coefficient vector with a
length of 24. If we wish to have two hoops, one at waveform position 3 and
another at waveform position 6, the coefficient vector to be loaded would be:

0 0 0 0 0 0 C1 H1 S1 0 0 0 0 0 0 C2 H2 S2 0 0 0 0 0 0

Where:

C1, H1, and S1 are the Center Volt, Half-Height Volt, and Sort Code values for
Hoop 1

C2, H2, and S2 are the Center Volt, Half-Height Volt, and Sort Code values for
Hoop 2

Users can upload the vector to the component's coefficient parameter. A simple path
for using this setup would require that candidate waveforms be downloaded to the
PC. Users would then view the plotted waveforms and determine the time in samples
and voltage position that would differentiate two classes of waveforms.

Name Description Data Type

Input Input Floating Point

Output Spike waveform of nWid samples Floating Point

nWid/2 1/2 number of samples stored Integer (Static)

ThrLo Lower threshold (in voltage) for
detecting a spike

Floating Point

ThrHi Upper threshold (in voltage) for
detecting a spike

Floating Point

Enable Resets the SortSpike so that candidate
spikes are only acquired during an
acquisition period

Logic

Tag Tag some form of identifier for the
waveform, can be a time stamp or
counter value

Any

Strobe Goes high for the length of the sample
when a spike is detected

Logic

SortBits Sort Code value associated with the
waveform

Integer

>Coef Coefficients that determine the time/
voltage values and sort code values

Pointer

>Data Data Port, allows access to memory
buffer

Pointer
NeuroAnalysis

284 RPvdsEx
SortSpike2

Description: The SortSpike2 component sorts spikes using a time/voltage window discriminator.
Candidate waveforms are detected when the rising edge (positive waveforms) or
falling edge (negative waveforms) of the waveform crosses the threshold voltage
(window) set for the Thresh parameter. The UseSign parameter allows the user to
specify unidirectional or bidirectional waveform detection. When a candidate waveform
is detected it is tagged with the value from the Tag input and a sort value is
assigned (SortBits). The data output contains the Tag value (timestamp of rising or
falling edge), sort value (sort code) and the waveform. The waveform is stored
with the point at which the rising or falling edge crosses the threshold at nWid/4
samples. For more information see the OpenEx Manual.

Organization of Waveform Data

Sample 1 = Tag Value (Timestamp)

Samples 2:(n-1) = Waveform

Sample n = Sort Code

For a SortSpike2 with nWid/4 = 16 the number of waveform samples would be 64
- 2 (Tag and SortBit) or 62 points of signal waveform.

This component is used primarily by TDT turnkey applications such as OpenEx. Users
should read the description of how to use SortSpike2 in OpenEx. A description of
how to use the component with custom codes is described below.

Setting the Time‐Voltage and Sort Codes via Custom Software

The SortSpike component uses information stored in a coefficient vector to determine
the time-voltage and sort code values.

Organization of the coefficient vector is as follows:

The coefficients are organized into a vector array which is 3 times the length of the
waveform. Three consecutive indices in the vector are associated with a single
sample along the waveform. These three values define a time-voltage window
discriminator or ‘hoop’ that a given waveform may pass through.

This means that vector indices [0], [1], and [2] represent the three time-voltage
hoop characteristics for the first sample of the waveform.

The three values used to define a hoop are the Center Voltage, Half-Height Voltage,
and Sort Code.
NeuroAnalysis

RPvdsEx 285
The Center and Half-Height Voltages are specified in Volts while the Sort Code is
specified as a positive integer from 1 to 30.

Note: If the incoming waveform passes through more than one hoop, the hoop in which
the waveform passes closest to the Center Voltage determines which hoop’s Sort
Code gets assigned.

Samples not containing hoops must have all three hoop characteristics zeroed.

For Example, a waveform containing 8 samples will use a coefficient vector with a
length of 24. If we wish to have two hoops, one at waveform position 3 and
another at waveform position 6, the coefficient vector to be loaded would be:

0 0 0 0 0 0 C1 H1 S1 0 0 0 0 0 0 C2 H2 S2 0 0 0 0 0 0

Where:

C1, H1, and S1 are the Center Volt, Half-Height Volt, and Sort Code values for
Hoop 1

C2, H2, and S2 are the Center Volt, Half-Height Volt, and Sort Code values for
Hoop 2

Users can upload the table to the component's coefficient parameter. A simple path
for using this setup would require that candidate waveforms be downloaded to the
PC. Users would then view the plotted waveforms and determine the time in samples
and voltage position that would differentiate two classes of waveforms.

Name Description Data Type

Input Input Floating Point

Output Spike waveform of nWid samples Floating Point

nWid/4 1/4 number of samples stored Integer (Static)

Thresh Threshold (in voltage) for detecting a
spike

Floating Point

Use Sign If set to zero any sign entered with the
Thresh value is disregarded and the
value is considered to be a +/-
number. If set to one, Thresh value
sign is considered.

Logic

Enable Resets so that candidate spikes are
only acquired during an acquisition
period

Logic

Tag Identifier for the waveform, can be a
timestamp or counter value

Any

Strobe Goes high for the length of the sample
when a spike is detected

Logic

SortBits Sort Code value associated with
waveform

Integer

>Coef Coefficients that determine the time/
voltage values and sort code values

Pointer

>Data Data Port, allows access to memory
buffer

Pointer
NeuroAnalysis

286 RPvdsEx
SortSpike3

Description: The SortSpike3 component sorts spikes using a time/voltage window discriminator.
Candidate waveforms are detected when the rising edge (positive waveforms) or
falling edge (negative waveforms) of the waveform crosses the threshold voltage
(window) set for the Thresh parameter. The UseSign parameter allows the user to
specify unidirectional or bidirectional waveform detection. When a candidate waveform
is detected it is tagged with the value from the Tag input and a sort value is
assigned (SortBits). The data output contains the Tag value (timestamp of rising or
falling edge), the waveform and sort value (sort code). The waveform is stored
with the point at which the rising or falling edge crosses the threshold at nWid/4
samples.

SortSpike3 is a slight modification to the SortSpike2 component. The only difference
is in the determination of the sort code.

Organization of Waveform Data

Sample 1 = Tag Value (Timestamp)

Samples 2:(n-1) = Waveform

Sample n = Sort Code

For a SortSpike3 with nWid/4 = 16, the number of waveform samples would be 64.
This number includes 62 points of signal waveform, the tag value and sort code.

This component is used primarily by TDT turnkey applications such as OpenEx. Users
should read the description of how to use SortSpike3 in OpenEx. A description of
how to use the component with custom codes is described below.

Setting the Time‐Voltage and Sort Codes via Custom Software

The SortSpike component uses information stored in a coefficient vector to determine
the time-voltage and sort code values.

Organization of the coefficient vector is as follows:

The coefficients are organized into a vector array which is 3 times the length of the
waveform. Three consecutive indices in the vector are associated with a single
sample along the waveform. These three values define a time-voltage window
discriminator or ‘hoop’ that a given waveform may pass through.

This means that vector indices [0], [1], and [2] represent the three time-voltage
hoop characteristics for the first sample of the waveform.
NeuroAnalysis

RPvdsEx 287
The three values used to define a hoop are the Center Voltage, Half-Height Voltage,
and Hoop Number.

The Center and Half-Height Voltages are specified in Volts while the Hoop Number
is specified as a positive integer.

Samples not containing hoops must have all three hoop characteristics zeroed.

For Example, a waveform containing 8 samples will use a coefficient vector with a
length of 24. If we wish to have two hoops, one at waveform position 3 and
another at waveform position 6, the coefficient vector to be loaded would be:

0 0 0 0 0 0 C1 H1 N1 0 0 0 0 0 0 C2 H2 N2 0 0 0 0 00

Where:

C1, H1, and N1 are the Center Volt, Half-Height Volt, and Hoop Number values for
Hoop 1

C2, H2, and N2 are the Center Volt, Half-Height Volt, and Hoop Number values for
Hoop 2

If the incoming waveform passes through more than one hoop, each hoop sets a
corresponding bit in the final sort code by the relationship:

2(HoopNum-1)

For example, if an incoming waveform passes through hoops 1,2 and 3, the
following bits would be set:

Value Bit

2(1-1)=1 0

2(2-1)=2 1

2(3-1)=4 2

This results in a final sort code of 7.

Users can upload the table to the component's coefficient parameter. A simple path
for using this setup would require that candidate waveforms be downloaded to the
PC. Users would then view the plotted waveforms and determine the time in samples
and voltage position that would differentiate two classes of waveforms.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Input Floating Point

Output Spike waveform of nWid samples Floating Point

nWid/4 1/4 number of samples stored Integer (Static)

Thresh Threshold (in voltage) for detecting a
spike

Floating Point

Use Sign If set to zero any sign entered with the
Thresh value is disregarded and the
value is considered to be a +/-
number. If set to one, Thresh value
sign is considered.

Logic
NeuroAnalysis

288 RPvdsEx
Tetrode

Description: The Tetrode component is designed to synchronize the acquisition of snippets from
multiple channels. Trigger inputs (Thr1-4) set the voltage threshold for each channel
of the tetrode. When the signal from a channel crosses its threshold a TTL pulse is
generated. The TTL output can be sent to a Block Access (with a delay) or it can
be used to trigger a SnipStore component that saves the waveform and stores a
time stamp.

Tetrode and SnipStore are designed primarily for use with the OpenEx software suite.
To learn more about how to use the Tetrode and SnipStore components with OpenEx
check your OpenEx documentation.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn. If you are using a Classic Processor, see the examples below for an
alternative circuit design or contact TDT technical support for more information.

Enable Resets the SortSpike3 so that candidate
spikes are only acquired during an
acquisition period

Logic

Tag Some form of identifier for the
waveform, can be a timestamp or
counter value

Any

Strobe Goes high for the length of the sample
when a spike is detected

Logic

SortBits Sort Code value associated with the
waveform

Integer

>Coef Coefficients that determine the time/
voltage values and sort code values

Pointer

>Data Data Port, allows access to the
memory buffer

Pointer

Name Description Data Type
NeuroAnalysis

RPvdsEx 289
Example: Tetrode

The example below shows how the basic Tetrode component could be used in
OpenEx. The Tetrode component compares signals from four input channels to a
corresponding voltage threshold. When a threshold is reached on any of the four
channels, the Tetrode output sends out a pulse for one cycle.

This output pulse (Go) can then be used to trigger the buffer acquisitions which
iterate four times, 1 for each channel. Each signal can be acquired with a SnipStore
that stores n/2 samples before and after the trigger as well as a time stamp
(Tag). Since each channel of the buffer would have the same number of stored
values only one Index needs to be polled. The use of "cSnip~{x}" with a RamBuf
allows threshold controls in OpenController.

Name Description Data Type

~1 Input signal from a channel 1 Floating Point

~2 Input signal from a channel 2 Floating Point

~3 Input signal from a channel 3 Floating Point

~4 Input signal from a channel 4 Floating Point

Output TTL pulse Logic

Thr1 Upper threshold (in voltage) for
triggering logical high

Floating Point

Thr2 Upper threshold (in voltage) for
triggering logical high

Floating Point

Thr3 Upper threshold (in voltage) for
triggering logical high

Floating Point

Thr4 Upper threshold (in voltage) for
triggering logical high

Floating Point

Enable When the Enable line is high, a TTL
pulse is triggered when any channel
goes above threshold

Logic
NeuroAnalysis

290 RPvdsEx

This example illustrates an alternative circuit design to achieve a signal equivalent to
the output of the Tetrode component without using the component itself. This example
is for users who wish to achieve the same operation as Tetrode using lower order
components on a Classic Processor.

The corresponding voltage threshold for each input channel can be controlled by
modifying the aSnip~ tag value tied to the K parameter of each Compare
component.
NeuroAnalysis

291
OpenEx	Headers
OpenEx Headers components are used with the OpenEx software suite, consolidating
information about a circuit construct and making it readily available in
OpenWorkbench.

This group includes the following components:

• OxBuffer

• OxList

• OxScalar

• OxSnippet

• OxStream

OxBuffer

Description: The OXBuffer component is used with the OpenEx software suite. The OXBuffer acts
as a circuit header, consolidating information about a circuit construct and making it
readily available in OpenWorkbench. The OXBuffer is used in data buffer circuit
constructs, which store an array of data in a memory buffer. See OpenEx Manual for
more information.

Name Description

Tag_Root Base name of the construct

Buffer_Size Block size of the acquired data

Data_Form Format of the data - the data type can be float, integer, short, or byte

Dec_Factor Decimation factor - if the data is reduced either through a Plot16dec or
through changes in the time-slice then a decimation factor other than one
should be used

HandShake Indicates whether a software trigger will be used for the handshake
OpenEx Headers

292 RPvdsEx
OxList

Description: The OXList component is used with the OpenEx software suite. The OXList acts as
a circuit header, consolidating information about a circuit construct and making it
readily available in OpenWorkbench. The OXList is used in data list circuit constructs,
in which a list of values is stored in one buffer and corresponding time stamps are
stored in another buffer. See the OpenEx Manual for more information.

OxScalar

Description: The OXScalar component is used with the OpenEx software suite. The OXScalar acts
as a circuit header, consolidating information about a circuit construct and making it
readily available in OpenWorkbench. The OXScalar is used in triggered scalar circuit
constructs, which are used when single variables that require a precise time stamp
must be stored and the interval between events varies. See the OpenEx Manual for
more information.

Channels The number of channels associated with the buffer

Name Description

Name Description

Tag_Root Base name of the construct

Data_Form Format of the data - the data type can be float or integer

Channels The number of channels associated with the list

Name Description

Tag_Root Base name of the construct

HandShake Indicates whether a software trigger will be used for the handshake
OpenEx Headers

RPvdsEx 2293
OxSnippet

Description: The OXSnippet component is used with the OpenEx software suite. The OXSnippet
acts as a circuit header, consolidating information about a circuit construct and
making it readily available in OpenWorkbench. The OXSnippet is used in signal
snippet circuit constructs, which consist of a time stamp and an associated data
buffer. See the OpenEx Manual for more information.

OxStream

Channels The number of channels associated with the scalar

Name Description

Name Description

Tag_Root Base name of the construct

Blk_Size Block size of the acquired snippet

Data_Form Format of the data - the data type can be float, integer, short, or byte

Sort_Code Sort code

Dec_Factor Decimation factor

HandShake Indicates whether a software trigger will be used for the handshake

Channels The number of channels associated with the snippet
OpenEx Headers

294 RPvdsEx
Description: The OxStream component is used with the OpenEx software suite. The OxStream
acts as a circuit header, consolidating information about a circuit construct and
making it readily available in OpenWorkbench. The OxStream is used in continuous
waveform circuit constructs, which are used for continuously acquired data waveforms
that do not require a unique time stamp. See the OpenEx Manual for more
information.

Name Description

Tag_Root Base name of the construct

Blk_Size Block size of the stream acquired

Data_Form Format of the data - the data type can be float, integer, short, or
byte

Dec_Factor Decimation factor

Channels The number of channels associated with the snippet
OpenEx Headers

295
State/Flow	Control
The StateFlow Control group includes components for the StateFlow control functions.

This group includes the following components:

• MuxIn

• MuxOut

• SampHold

• SimpCount

• StateMach

This group also includes the following component, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCSampHold

MCSampHold

Description: The MCSampHold component is the multi-channel version of the SampHold
component. It samples input values while S/H is set to a logical high. When S/H
goes to zero, the last value is held. SampHold differs from Latch in that Latch holds
the first value when triggered by a logical high input and holds that value until the
next logical high.

Name Description Data Type

Inputs Input signal to be sampled/held Any

Output Output value of the component
(Depending on the value of S/H, this
will either be a held value or a newly
sampled value of the input signal.)

Any

nChan Number of channels in the input signal Integer (Static)

S/H Sample/Hold Control (When set high
(1), the component will sample. When
set low (0), the component will
hold.)

Logic
State/Flow Control

296 RPvdsEx
Example: Multi-channel Sample and Hold

The above example uses a MCSampHold component to look at the scaled value of
the multi-channel input from the ADC every 2000 milliseconds. The S/H parameter
is set high for a 1000 ms and set low the rest of the time, so it samples for a
1000 milliseconds and then holds the last value for 1000 milliseconds.

MuxIn

Description: Multiplexer device. Takes four input streams and sends one of them to its output.
The select parameter indicates which input is sent to the output. Reset sets the
output value to zero. See “MuxOut” below.

Equation: Lo = Ii 1=Select value

Name Description Data Type

Inputs Input Floating

Output Input signal based on Select line Floating

Rst Forces the output to 0 Logic

Sel Select line Integer value between 0
and 3 selects the input line

Integer
State/Flow Control

RPvdsEx 297
MuxOut

Description: Multiplexer device. Takes one input and sends it to one of four outputs. The select
parameter determines which output stream is chosen. Unselected outputs are set to
zero. Reset sets all outputs to zero. See “MuxIn” above.

Equation: Lo = Ii 1=Select value

SampHold

Description: The SampHold component Samples input values while S/H is set logical high. When
S/H goes to zero the last value is held. SampHold differs from Latch in that Latch
holds the first value when triggered by a logical high input and holds that value until
the next logical high.

Name Description Data Type

Input Input Floating

Outputs Output signal based on Select line Floating

Rst Forces all outputs to 0 Logic

Sel Select line Integer value between 0
and 3 selects the Output line

Integer

Name Description Data Type

Inputs Input signal to be sampled/held Any

Output Output value of the component
(Depending on the value of S/H, this
will either be a held value or a newly
sampled value of the input signal.)

Any

S/H Sample/Hold Control (When set high
(1), the component will sample. When
set low (0), the component will
hold.)

Logic
State/Flow Control

298 RPvdsEx
Example: Sample and Hold

The above example uses a SampHold component to look at the RMS value of the
input from the ADC every 2000 milliseconds. The S/H parameter is set high for a
1000 ms and set low the rest of the time, so it samples for a 1000 milliseconds
and then holds the last value for 1000 milliseconds.

SimpCount

Description: The SimpCount component is a simple counter that starts at zero and counts up
from there. The count goes up by one for each sample period that the Enable
parameter is set high. If the Reset parameter is set high, the count gets reset to
zero.

The Counter component is more powerful than SimpCount, and allows for different
starting values, looping, etc. SimpCount is useful for basic counting tasks, but
Counter is required for more advanced counting tasks such as offsetting the position
in a memory buffer.

Name Description Data Type

Output Current integer count Integer

Rst Resets counter when logic is high (1) Logic

Enable When enable is set high (1), counter
is incremented on each tick of the
clock

Logic
State/Flow Control

RPvdsEx 299
StateMach

Description: A state machine changes its output based on the combination of inputs to the
system. A look-up table (see example below) determines the state of the machine.
An additional Output select table allows the user to send a given output based on
the machine's state.

The state machine is divided into two parts. The first part determines the state of
the machine and the second part determines the output value.

Determining The State Of The Machine.

Four inputs determine the state of the machine.

When Reset is high (=1) the machine state becomes state 0.

When Enable is low (=0) the machine state is fixed at the last state until it goes
high again (=1).

When Enable is high (=1) and Reset is low(=0) the state of the machine is
determined by the input values for JmpA and JmpB. The top portion of the look-up
table (see example below) determines the state based on the present state of the
machine and the input values for JmpA and JmpB.

Using the example below: if the last state of the machine was State 2, (JmpB=1)
and JmpA went high (=1) the state machine would go to state 0 (In state 2 when
both JmpA and JmpB are high (=1) the state of the machine becomes State 0).
It then becomes State 3 (When Both=1 in State 0 the State changes to State 3).
After that it toggles between state 3 and state 0.

Use StNum to check the present state of the Machine.

Use StChange to check if the state of the machine has changed.

Determining The Output Of The State Machine.

The Output select (OutSel) value (in conjugation with the machine state)
determines the output value of the State machine.

In the look-up table example below when machine is in State 1 (S1) and the
OutSel=3 the Output value is the integer 7.

Use DataTable to design the look-up table. Below is the logical structure for a look-
up table. In the table below, the columns S0, S1, S2, and S3 correspond to the
four possible states of this state machine. The logic rows (If None, If JmpA, If
JmpB, If Both) are used to control how the state machine jumps from one state to
State/Flow Control

300 RPvdsEx
another. The Output rows are used to control the output of the state machine,
depending on the OutSel input and the current state.

Note: The state machine outputs only integers.

Name Description Data Type

Output Value in look-up table based on the
state of the machine

Integer

nStates Number of possible states for the State
Machine

Integer (Static)

Rst When Rst is high (1)the state of the
machine is at State 0

Logic

Enab Enab low fixes the state of the
machine at the last State. State
changes can occur when Rst is low
and Enab is high

Logic

JmpA JmpA changes state of machine Logic

JmpB JmpB changes the state of the machine Logic

Outsel Depending on state of the machine
sends out an integer value

Integer

>Data Pointer to Lookup table pointer

Stnum Present state of the Machine Integer

StChange checks to see if the state of the
machine has changed recently

Logic

Outputs Output signal based on Select line Floating
State/Flow Control

301
Trigonometry
The Trigonometry group includes components for the trigonometric functions. All
trigonometric functions are in Radians.

This group includes the following components:

• Arccos

• Arcsin

• Arctan

• Cos

• Distance

• Sin

• Tan

Arccos

Description: This component calculates the arccosine of the input that is bounded by -1 to 1.
Output is in Radians. The output values are the arccos valued in the range [0, pi].

Equation: Output = Arccos (Input)

Arcsin

Name Description Data Type

Input Input Floating Point

Output Arccos (Input) in Radians Floating Point
Trigonometry

302 RPvdsEx
Description: This component calculates the arcsine of the input that is bounded by -1 to 1.
Output is in Radians. The output values are the arcsin values in the range [-pi/2,
pi/2].

Equation: Output = Arcsin (Input)

Arctan

Description: This component calculates the arctangent of the unbounded input. Output is in
Radians. The output values are the arctan values in the range [-pi/2, pi/2].

Equation: Output = Arctan (Input)

Cos

Description: This component calculates the cosine of the unbounded input. Output is in Radians.

Equation: Output = Cos (Input)

Name Description Data Type

Input Input Floating Point

Output Arcsin (Input) in Radians Floating Point

Name Description Data Type

Input Input Floating Point

Output Arctan (Input) in Radians Floating Point

Name Description Data Type

Input Input Floating Point

Output Cos (Input) in Radians Floating Point
Trigonometry

RPvdsEx 303
Distance

Description: Calculates the distance between two points in x,y space. Useful for computing
distance between output of eye tracker and desired focus location.

Note: Stereo processor input (put x,y data in stereo format) X = X position, Y = Y
position

Example: Distance

File: Examples\Distance_ex.rcx

Default Device: RP2.1 Processor

Sampling Rate: 50 kHz

This example demonstrates how Distance can be used to detect when the output
from an eye-tracker is within a specified radius of a target. A StereoADC is used to
acquire two channels of eye tracker input. The distance between the X,Y input from
the ADC and the XCenter and YCenter of the target is compared to 0.5 V and a
TTL pulse is sent out whenever it is less than 0.5 V. Use the ConstF functions to
modify the circuit in RPvdsEx.

Note: XCenter and YCenter require the use of ActiveX controls or TDT programs other than
RPvdsEx. Additional circuitry not shown is included to make the example run within
RPvdsEx.

Name Description Data Type

Input Stereo signal, put x, y data in stereo
format

Floating Point

Output Mono signal Floating Point

Xo X-value in X,Y space Floating Point

Yo Y-value in X,Y space Floating Point
Trigonometry

304 RPvdsEx
Sin

Description: This component calculates the sine of the unbounded input. Output is in Radians.

Equation: Output = Sin(Input)

Tan

Description: This component calculates the tangent of the unbounded input. Output is in Radians.

Equation: Output = Tan (Input)

Name Description Data Type

Input Input Floating Point

Output Sin (Input) in Radians Floating Point

Name Description Data Type

Input Input Floating Point

Output Tan (Input) in Radians Floating Point
Trigonometry

305
Type	Conversion
These Type Conversion components are used to convert a signal from one data type
to another.

This group includes the following components:

• Float2Int

• Float2TTL

• Flt2Stereo

• FromHopPick

• Int2Float

• Int2TTL

• Stereo2Flt

• TTL2Float

• TTL2Int

This group also includes the following components, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCFloat2Int

• MCFloat2Int8

• MCFloat2Int16

• MCForceCC

• MCFromHop

• MCFromSer

• MCFromSing

• MCInsert4

• MCInt2Float

• MCInt16ToFLT

• MCInt8ToFlt

• MCMap

• MCMerge

• MCSubSel

• MCToSing

• MCToSer

Type Conversion

306 RPvdsEx
Float2Int

Description: The Float2Int scales the input and converts the result from a 32-bit float to a 32-
bit integer.

Equation: Output = round(Input * SF))

Example: “RamBuf” on page 135.

Float2TTL

Description: This component returns 1 if the input is above the threshold value.

Equation: If (Input > Thrsh) then Output = 1

else Output= 0

Example: “CycUsage” on page 201.

Name Description Data Type

Input Input Floating Point

Output Round (Input*SF) Integer

SF Scale Factor Floating Point

Name Description Data Type

Input Input Floating Point

Output If Input>Thrsh then Output=1 else
Output=0

Logic

Thrsh Threshold value for TTL high Floating Point
Type Conversion

RPvdsEx 307
Flt2Stereo

Description: Converts to two floating point inputs into a stereo formatted signal.

FromHopPick

Description: FromHopPick outputs a single channel from an array of single channel indexed hops.
Each hop must be named [Root]~# where [Root] is the name of FromHopPick and
is the channel number. There must be a hop for each channel. Use IndexSel to
choose which hop to output from FromHopPick. See example below.

In this example, each channel of a 16-channel stream (MCSig) is extracted using
MCToSing, the RMS computed and FromHopPick is used to access one channel for
further processing. The RMS calculation occurs inside of an iterate box to simplify
programming. This example is useful when MC components don’t exist for the
desired function.

Name Description Data Type

L Left channel input Floating Point

R Right channel input Floating Point

Output Stereo formatted signal Floating Point
Type Conversion

308 RPvdsEx
Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Int2Float

Description: This component converts the input from a 32-bit integer to a 32-bit float and then
scales the result.

Equation: Output = Input * SF

Example: “BlockAcc” on page 129.

Int2TTL

Description: This component outputs 1 if the specified bit of the input is set.

Name Description Data Type

Output Multi-channel signal Floating Point

nChan Number of channels (4-256) Integer (Static)

IndexSel Selects the desired hop Integer

Name Description Data Type

Input Input Integer

Output Input*SF Floating Point

SF Scale Factor Floating Point

Name Description Data Type

Input Input Integer

Output If Input BitMask=1 then Output=1 else
Output=0

Logic

BitN Bit value for Output high Integer
Type Conversion

RPvdsEx 309
Equation: If (Input AND BitN) = 1, then Output = 1

else Output = 0

MCFloat2Int

Description: This is the multi-channel version of Float2Int. It scales the 32-bit floating point input
of each channel and then converts the result to a 32-bit integer.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: Output = round(Input * SF)

MCFloat2Int8

Description: MCFloat2Int8 takes a multi-channel input of 32-bit floating values, scales them,
converts them to 8-bit integer numbers and packs them into 32-bit integers. The
resultant MC stream has nChan/4 channels.

RPvdsEx might warn of a channel mismatch. It is okay to ignore this warning.

Name Description Data Type

Input Multi-channel input signal Floating Point

Output Multi-channel output signal Integer

nChan Number of Channels Integer (Static)

SF Scale Factor Floating Point
Type Conversion

310 RPvdsEx
This reduction technique can be used to decrease memory allocation for data storage
or quadruple the data transfer rate to and from the PC.

The scale factor (SF) is used to appropriately scale the floating point input before
it is converted to an 8-bit integer. Use an SF of 127 for a +/- 1V range and an
SF of 12.7 for a +/- 10 V range. The SF and input values must be matched.
Mismatch between the SF and input value range gives poor resolution or meaningless
data.

See “Data Reduction and Scale Factor” on page 176.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCFloat2Int16

Description: MCFloat2Int16 takes a multi-channel input of 32-bit floating values, scales and
converts them to 16-bit integer numbers and packs them into 32-bit integers. The
resultant MC stream has nChan/2 channels.

RPvdsEx might warn of a channel mismatch. It is okay to ignore this warning.

This reduction technique can be used to decrease memory allocation for data storage
or double the data transfer rate to and from the PC.

The scale factor (SF) is used to appropriately scale the floating point input before
it is converted to a 16-bit integer. The default SF is set to 32767 and assumes
that the input is bounded between +/- 1.0 V. Use an SF of 3276.7 for a +/- 10

Name Description Data Type

Input Multi-channel input Floating Point

Output Multi-channel output of 32-bit integers;
four channels of 8-bit integers are
packed into each channel

Integer

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point

nChan Number of Channels Integer (Static)
Type Conversion

RPvdsEx 311
V range. The SF and input values must be matched. Mismatch between the SF and
input value range gives poor resolution or meaningless data. See “Data Reduction
and Scale Factor” on page 176.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCForceCC

Description: The MCForceCC component is used to force the in-path channel count to the
specified value. This is useful for type conversions that inherently change the channel
count (such as MCInt16ToFlt).

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCFromHop

Name Description Data Type

Input Multi-channel input Floating Point

Output Multi-channel output of 32-bit integers;
two channels of 16-bit integers are
packed into each channel

Integer

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point

nChan Number of Channels Integer (Static)

Name Description Data Type

Input Multi-channel input signal Floating Point

Output Multi-channel signal with specified
channel count

Floating Point

nChan Number of channels in the output
signal

Integer (Static)
Type Conversion

312 RPvdsEx
Description: MCFromHop builds a multi-channel signal from single channel indexed hops. Each
hop must be named [Root]~# where [Root] is the name of MCFromHop and # is
the channel number. There must be a hop for each channel. See example below.

In this example, each channel of a four-channel stream (MCSig) is extracted using
MCToSing, the RMS computed and the MC signal is reformed using MCFromHop.
This occurs inside of an iterate box to simplify programming. This example is useful
when MC components don’t exist for the desired function.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCFromSer

Description: The MCFromSer component converts a serial sequence of integer or floating point
values to a multi-channel signal. On each sample when SyncIn is high, the current
input value is written to the current output channel pointer (starting with channel 1)
and the channel pointer is incremented. To write all channels, SyncIn should go high
for the total number of channels (nChan). When the last channel has been written
to, the Strobe output will go high for one sample indicating that a new sample on
each channel is ready. Each output value is latched until the next time it is updated.

Name Description Data Type

Output Multi-channel signal Floating Point

nChan Number of channels (4-256) Integer (Static)
Type Conversion

RPvdsEx 313
Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCFromSing

Description: MCFromSing builds a multi-channel signal from multiple single channel signals. Most
multi-channel components require merged multi-channel inputs. MCFromSing can be
used to create a multi-channel signal using up to four single channels.

To build a multi-channel signal with more than four single channels, the signals must
first be merged in groups of four using MCFromSing. The outputs from each
MCFromSing can then be merged using the MCMerge. For higher channel counts or
for a simplified technique, see “MCFromHop” on page 311.

Caution: Inputs to the MCFromSing must be of the same data type.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Name Description Data Type

Input Single channel input signal Integer

Output Parallel conversion of serial input. Each
progressive channel contains the next
serial input value

Integer

nChan Number of channels to convert serial
input to

Integer

SyncIn Initiates the conversion on a rising
edge

Logic

Strobe Goes high for a single sample when a
single sample has been converted for
all channels

Logic

Name Description Data Type

Input (Multiple) Single channel inputs Any

Output Multi-channel output Same as input
Type Conversion

314 RPvdsEx
MCInsert4

Description: Insert a single-channel value on up to 4 channels of the multi-channel input stream.
The selected channels (chosen by ChanSel-A…ChanSel-D) are overwritten with the
value on the InsertVal input. This component is useful for generating stimulus for IZ2
that plays on a subset of channels. These can be cascaded to insert a value on
more than 4 channels.

MCInt2Float

Description: This is the multi-channel version of the Int2Float component. It converts the multi-
channel input from 32-bit integers to 32-bit floating-point values and then scales the
result.

Note: This component is for use with high performance processor devices, such as RXn or
RZn.

Name Description Data Type

nChan Number or channels Integer (static)

Insert Value to insert Any

ChanSel-A Insert channel number A (0=none) Integer

ChanSel-B Insert channel number B (0=none) Integer

ChanSel-C Insert channel number C (0=none) Integer

ChanSel-D Insert channel number D (0=none) Integer

Name Description Data Type

Input Multi-channel input signal Integer

Output Multi-channel output signal Floating Point

SF Scale Factor Floating Point
Type Conversion

RPvdsEx 315
Equation: Output = Input * SF

MCInt16ToFlt

Description: MCInt16ToFlt takes a multi-channel input of 32-bit integers where each 32-bit
integer is packed with two 16-bit integers, scales and converts them to 32-bit
floating point for further floating point processing. The input MC stream should have
nChan/2 channels because of the integer packing. The output MC stream has nChan
channels. This is the inverse operation of MCFloat2Int16.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCInt8ToFlt

Description: MCInt8ToFlt takes a multi-channel input of 32-bit integers where each 32-bit integer
is packed with four 8-bit integers, scales and converts them to 32-bit floating point
for further floating point processing. The input MC stream should have nChan/4
channels because of the integer packing. The output MC stream has nChan
channels. This is the inverse operation of MCFloat2Int8.

nChan Number of Channels Integer (Static)

Name Description Data Type

Name Description Data Type

Input Multi-channel input; two 16-bit integers
packed into each channel

Integer

Output Multi-channel output of 32-bit floats Floating Point

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point

nChan Number of Channels Integer (Static)
Type Conversion

316 RPvdsEx
Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCMap

Description: McMap is a component that allows users to reorganize the input channel configuration
to a desired output configuration. This allows the logical channel organization to
match the spatial orientation of an electrode array. It can also be used to reorder
TDT adapters to ZIF-Clips or EEG cap arrays.

Input channels from a MC component are reorganized based on the ordering of the
channel number configuration from the >Map input parameter. The MCMap memory is
an array equal in length to nChan that contains the reordered channels. For
example, if recording channel eight of sixteen was the most distal electrode it could
be remapped as either the first or last channel (channel 16).

Set nChan to the number of channels in the output signal (not the input signal). If
nChan is smaller than the number of channels at the input a warning will be given
in RPvdsEx, this warning may be disregarded if the intention is to output a subset
of the multi-channel input signal.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Example: The example below illustrates how to remap the physical electrode sites of a 16-
channel acute probe to the headstage.

Name Description Data Type

Input Multi-channel input; four 8-bit integers
packed into each channel

Integer

Output Multi-channel output of 32-bit floats Floating Point

SF Scale factor sets the scale for the input
before sample conversion; scale factor
depends on input voltage

Floating Point

nChan Number of Channels Integer (Static)

Name Description Data Type

Input Multi-channel input signal Floating Point

Output Multi-channel sub-set of input Floating Point

nChan Number of channels in the output
signal

Integer (Static)

>Map Pointer to Map buffer (PM) Pointer
Type Conversion

RPvdsEx 317
A pinout of the headstage/adapter as well as the probe are required. The DataTable
component in RPvdsEx can be used to load the channel map to the MCMap
component.

Select ChanMap in the Type/Format drop down menu located in the DataTable
component settings dialog when using the DataTable with the MCMap component.

Headstage pinout 16-Channel Acute Probe and its site mapping.

Below is an example of the basic components used to remap the input signal.

Based on the pinouts pictured above, the DataTable entries are mapped according to
the desired position of the physical electrode sites. For instance, the most distal
electrode on the acute probe is channel 6. If we wish this to represent channel 16,
we would need to remap channel 6 to channel 16.

Since the headstage pinout matches the electrode, we only need to remap the
electrode sites. After remapping the electrode sites according to their insertion depth
from channel 1 to 16, the new physical site mapping will look like this:
Type Conversion

318 RPvdsEx

When the circuit is run, the first column is loaded.

Note: If you are not using the DataTable with the MCMap component, the channel map
can be loaded as follows:

Map = 9 8 10 7 13 4 12 5 15 2 16 1 14 3 11 6

MCMerge

Description: MCMerge merges multiple multi-channel signals to form a single multi-channel signal.
The MCMerge inputs must be multi-channel signals. Single channel signals can be
merged into a multi-channel signal using MCFromSing (ToMC). The MCMerge
inputs may include any number of channels, so long as they are multi-channel
signals.

The MCMerge component is typically used to merge multiple channel signals from
several MCFromSing components. If more than four channels are to be merged, they
must first be merged in groups of four using MCFromSing. The outputs from each
MCFromSing can then be merged using the MCMerge.

Merge up to four
multi-channel signals
Type Conversion

RPvdsEx 319
Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

MCSubSel

Description: The MCSubSel is used to form a multi-channel signal from a sub-set of another
multi-channel signal. Set nChan to the desired number of channels in the output
signal (not the input signal). Set ChanSel to the first channel in the range of
interest. ChanSel + nChan should not be greater than the number of channels
contained in the input signal.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Example: To select channels 33 thru 48 of a 64 channel input signal, set nChan = 16 and
ChanSel = 33.

MCToSer

Description: The MCToSer component serializes a multi-channel signal. It can be used for
compressing high channel count sort code data and passing it across processors
efficiently.

Name Description Data Type

Input (multiple) Multiple multi-channel inputs Any

Output Merged output Same as Input

Name Description Data Type

Input Multi-channel input signal Floating Point

Output Multi-channel sub-set of input Floating Point

nChan Number of channels in the output
signal

Integer (Static)

ChanSel Channel select line Integer
Type Conversion

320 RPvdsEx
The rising edge of SyncIn is used to begin the conversion and should be pulsed
once. The Strobe output goes high after SyncIn is triggered and remains high until
the MC signal has been completely serialized. When Strobe is low, the output of
MCToSer is nChan (or nChan + 1 if nChan is odd).

The CmpOp input determines the compression of the serial output. When CmpOp is
0, the serial stream is the same data type as the input stream. This is useful for
serializing a data stream with a high precision (floats or 32-bit integers).

When CmpOp is 1, the serial stream contains nChan/2 values. The input stream
should be unsigned integers with values in the range 0-15. Each output value
contains data from two channels compressed into a single 32-bit value. The lower
16-bits of the first output contain the first channel data, the upper 16-bits of the
first output contain the second channel, and so on.

When CmpOp is 2, the serial stream contains nChan/4 values. The input stream
should be unsigned integers with values in the range 0-3. Each output value
contains data from four channels compressed into a single 32-bit value. The lower
8-bits of the first output contain the first channel data, the next 8-bits of the first
output contain the second channel, and so on.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

*See the component description for details of input/output data types as they
correspond to the CmpOp value.

MCToSing

Description: This component allows the user to extract a single channel signal from a multi-
channel signal by selecting the channel number required. The channel number can be
selected dynamically.

Name Description Data Type

Input Multi-channel channel input signal Any*

Output Serialized conversion of multi-channel
input.

Any*

nChan Number of channels in input stream Integer

CmpOp Compression operation select (0,1,2) Integer

SyncIn Initiates the conversion on a rising
edge.

Logic

Strobe Goes high for a single sample for each
serial conversion.

Logic
Type Conversion

RPvdsEx 321

One MCToSing component is required for each single channel signal to be extracted.
This component is particularly powerful when used with iterations.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Example: MCToSing - MCToSing is used to extract a channel for further processing using
single-channel components. Typically, single channel signals must be extracted when
there is no multi-channel component that can perform the necessary processing task.
In the example below a single channel is extracted from a 16-channel signal, that
channel is then processed for sorting spike data using SortSpike2.

Stereo2Flt

Description: Splits a stereo input into separate Left and Right signals.

Name Description Data Type

Input Multi-channel input signal Any

Output Single channel output Any

ChanSel Channel select line Dynamic Integer

Name Description Data Type

Input Stereo formatted signal Floating Point

L Left channel out Floating Point

R Right channel out Floating Point
Type Conversion

322 RPvdsEx
TTL2Float

Description: This component converts the input from a TTL value to the specified 32-bit float
when true, else it converts the input to 0.

Equation: If Input = 1, then Output = HiVal

else Output=0

TTL2Int

Description: This component converts the input from a TTL value to the specified 32-bit integer
when true, else it converts the input to 0.

Equation: If Input = 1, then Output = HiVal

else Output = 0

Name Description Data Type

Input Input Logic

Output If Logic high then Output=HiVal else
Output=0

Floating Point

HiVal HiVal for logic Hi Floating Point

Name Description Data Type

Input Input Logic

Output If logic high then Output=HiVal else
Output=0

Integer

HiVal HiVal for Logic high Integer
Type Conversion

323
Waveform	Generators
Waveform Generators are components that generate signals on the DSP. Almost any
signal can be produced by combining these basic waveform generators with filters
and signal mixers.

This group includes the following components:

• ConstF

• ConstI

• ConstL

• FStep

• GaussNoise

• RampTooth

• Random

• SawTooth

• Tone

• TSlope

This group also includes the following component, if RPvdsEx Device Setup is
configured for a high performance device, such as the RXn or RZn:

• MCConst

• MCValList

• PulseGen

ConstF

Description: This component feeds the signal chain with the specified constant. Often used with
parameter tags, which are unable to connect to the input port of a processor.

Name Description Data Type

Output K Floating Point

K Constant Value Floating Point
Waveform Generators

324 RPvdsEx
Equation: OutputO = K1

ConstI

Description: This component feeds the signal chain with the specified constant. Often used with
parameter tags, which are unable to connect to the input port of a processor.

Equation: OutputO = K1

ConstL

Description: This component feeds the signal chain with the specified constant. Often used with
parameter tags, which are unable to connect to the input port of a processor.

Equation: LO = K1

FStep

Name Description Data Type

Output K Integer

K Constant Value Integer

Name Description Data Type

Output K Logic

K Constant Value Logic
Waveform Generators

RPvdsEx 325
Description: The FStep is an up/down counter. It counts for the duration of a high pulse sent
to the Enable port (Enab). It increments the count by a set value (determined by
Step) for each pulse of sample clock (e.g. if the enable is high for 1 msec and
the sample rate is 25 Kilohertz then the counter will step 25 times). When it
reaches the Min or Max value the FStep stops and retains that value until reset
(see below for more details). The FStep starts at the Base value the first time the
counter is started or after the Reset (Rst) port is triggered (value goes from low
(0) to high (1)).

Use FStep in place of Counter (which is primarily designed for RamBuffers) for
functions that require countdown, negative numbers, or floating point output.

GaussNoise

Description: This component generates a white noise process with a Gaussian probability density
function with the specified attributes. Peak voltages will be higher. To avoid clipping
a signal the RMS amplitude should be less than 2.1.

Name Description Data Type

Output Incremented Floating point value Floating Point

Base Base value Floating Point

Step Step Size Floating Point

Min Minimum value for counter Floating Point

Max Maximum value for counter Floating Point

Rst Resets counter when Logic is High Logic

Enable When Enable line is set hi(1) counter
is incremented on each tick of the
clock.

Logic

Name Description Data Type

Output Gaussian Noise Floating Point

Amp RMS Amplitude of the Signal Floating Point

Shift DC shift of signal output. Floating Point

Seed Integer value for Random generation of
noise output

Integer
Waveform Generators

326 RPvdsEx
All noise generators produce a fixed energy across the bandwidth of the RPvdsEx
circuit. In other words, the noise power is spread evenly across the entire Nyquist
bandwidth. Changing the sampling rate changes the Nyquist bandwidth and thus alters
the RMS noise level over a fixed bandwidth by the following relationship:

RMS dB change=20*log(New SR/Old SR)/2

Doubling the sample rate will double the Nyquist frequency and decrease the RMS
noise level over a fixed bandwidth by 3 dB. Similarly, halving the SR will increase
the RMS over that bandwidth by 3 dB.

Note: The PowerBand difference will be 6dB.

Example(s): Second Order Biquad Filter (filtered noise with Butterworth coefficients), see
“ButCoef” on page 151.

Parametric Coefficient (filtered noise with parametric coefficients), see “ParaCoef” on
page 156.

MCConst

Description: This component is a multi-channel version of the ConstF component. MCConst feeds
a specified constant to a multi-channel output. The constant is specified using the
Value parameter and can be controlled dynamically. The constant is fed to each of
the signals in the multi-channel signal. The number of channels in the output is
specified by the nChan parameter.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Rst When set high, resets sequence to
restart at random (seed). Feeding
new Seeds produces different noise.
Feeding the same seed produces the
same noise sequence.

Logic

Name Description Data Type
Waveform Generators

RPvdsEx 327
Equation: Output(1: nChan) = Value

MCValList

Description: This component is similar to MCConst but lets you specify the value for each
individual channel. MCValList feeds a specified list to a multi-channel output. The
value list is specified using the {>List} parameter and can be controlled statically
with an nRow DataTable or dynamically with a ParTag. The number of channels in
the output is specified by the nChan parameter.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

Equation: Output(1: nChan) = {>List}

Name Description Data Type

Output Multi-channel output Floating Point

nChan Number of channels required in output
signal

Integer (Static)

Value Constant value fed to the output Floating Point

Name Description Data Type

Output Multi-channel output Floating Point

nChan Number of channels required in output
signal

Integer (Static)

{>List} Pointer to value list (DataTable or
ParTag)

Floating Point
Waveform Generators

328 RPvdsEx
PulseGen

Description: PulseGen is a three segment pulse generator with all timing specified in samples. All
setup parameters can be controlled dynamically. The Trig input triggers the pulse.
The Reset input can be used to asynchronously halt the pulse generator. To produce
continuous pulses, set and hold Trig to 1. To produce a set number of pulses,
connect a PulseTrain2 component to the Trig input.

Note: This component is for use with only high performance processor devices, such as
RXn or RZn.

RampTooth

Description: This component generates a ramped waveform with the specified attributes.

Name Description Data Type

Output Floating point value Floating Point

nSegA Duration of segment A (in samples) Integer

nSegB Duration of segment B (in samples) Integer

nSegC Duration of segment C (in samples) Integer

vSegA Output value during segment A Floating Point

vSegB Output value during segment B Floating Point

vSegC Output value during segment C Floating Point

Trig Triggers the three segment pulse Logic

Reset Forces output to zero and halts pulse Logic
Waveform Generators

RPvdsEx 329
Note: Ensure that the bounds of the phase parameter are greater than -180 and less than
+180. Any value (including exactly -180 or +180) outside of these bounds will be
set to a phase of zero.

Random

Description: This component generates a white noise process with a uniform probability density
function with the specified attributes. The amplitude specifies the maximum output of
the component.

All noise generators produce a fixed energy across the bandwidth of the RPvdsEx
circuit. In other words, the noise power is spread evenly across the entire Nyquist
bandwidth. Changing the sampling rate changes the Nyquist bandwidth and thus alters
the RMS noise level over a fixed bandwidth by the following relationship:

RMS dB change=20*log(New SR/Old SR)/2

Name Description Data Type

Output Ramped waveform Floating Point

Amp Peak amplitude of the signal Floating Point

Shift DC shift of signal output Floating Point

Freq Frequency in Hz Floating Point

Phse Phase of sine when Rst goes from
high to low

Floating Point

Rst When reset goes high. Sine phase
resets to Phse

Logic

Name Description Data Type

Output Uniformed distribution of values. Floating Point

Amp Peak Amplitude. Floating Point

Shift DC shift of signal output. Floating Point

Seed Integer value for Random generation of
noise output

Integer

Rst When set high, resets sequence to
restart at random (seed). Feeding
new Seeds produces different noise.
Feeding the same seed produces the
same noise sequence.

Logic
Waveform Generators

330 RPvdsEx
Doubling the sample rate will double the Nyquist frequency and decrease the RMS
noise level over a fixed bandwidth by 3 dB. Similarly, halving the SR will increase
the RMS over that bandwidth by 3 dB.

Note: The PowerBand difference will be 6dB.

SawTooth

Description: This component generates a saw tooth waveform with the specified attributes.

Note: Ensure that the bounds of the phase parameter are greater than -180 and less than
+180. Any value (including exactly -180 or +180) outside of these bounds will be
set to a phase of zero.

Tone

Description: Generates a sinusoid Waveform with the specified frequency and phase. The
waveform's Amplitude and DC Shift can also be controlled. The Rst control is used
to reset the signals phase. The output will remain locked at the specified starting

Name Description Data Type

Output Gaussian noise Floating Point

Amp RMS amplitude of the Signal (0.707
rms=1 volt max peak-to-peak)

Floating Point

Shift DC shift of signal output Floating Point

Freq Frequency in Hz Floating Point

Phse Phase of sine when Rst goes from
high to low

Floating Point

Rst When reset goes high, sine phase
resets to Phse

Logic
Waveform Generators

RPvdsEx 331
Phase as long as Rst is high. Typically an Edge Detector is used in conjunction with
the Rst control.

Note: Ensure that the bounds of the phase parameter are greater than -180 and less than
+180. Any value (including exactly -180 or +180) outside of these bounds will be
set to a phase of zero.

Example: This example demonstrates a number of circuit design concepts as well as the use
of the Tone component. The circuit shown will generate an AM modulated sinusoidal
output from channel one of the DAC. The output will be 100% modulated with a
peak voltage of 2.0 volts.

The external trigger input is used to turn the output on and off by driving the Rst
control of the modulator tone. Notice that the phase for the modulator tone is
specified as -90 degrees causing it to fully 'close' when the reset line is high
(trigger input is low).

The carrier tone is set for 1000 Hz output. The default value of Amp = 1.0 will be
ignored as this parameter is being dynamically controlled by the modulator tone. The
carrier's Rst is fed by an edge detector connected to the external trigger. This forces
the carrier to start at sine phase 0.0 each time the external trigger is high.

Name Description Data Type

Output Tone of set frequency amplitude and
DC shift

Floating Point

Amp Peak amplitude of the signal Floating Point

Shift DC shift of signal output Floating Point

Freq Frequency in Hz Floating Point

Phse Phase of sine when Rst goes from
high to low

Floating Point

Rst When reset goes high, sine phase
resets to Phse

Logic

Modulator Tone

Carrier Tone
Waveform Generators

332 RPvdsEx
TSlope

Description: This component generates a linear ramp waveform with the specified attributes. It is
useful for generating a time value for time stamping buffer operations.

Name Description Data Type

Output Linear ramp related to slope rate Floating Point

Min Minimum (starting) value of the Output Floating Point

Slp Slope of amplitude ramp in units/
millisecond

Floating Point

Max Maximum value of the Output Floating Point

Rst When Hi, reset Output to Min and
generate ramp

Logic
Waveform Generators

333
Menu	and	Toolbar	Reference	

Menus

File Menu
The File menu includes standard file operations for saving, loading, and printing
RPvdsEx files.

New Opens a new file.

Open Opens the Open dialog box so that an existing file can be opened.

Close Closes the active file, leaving the application open.

Save
Saves the current file with the current name. If the file has not
previously been saved, the Save As dialog box opens so that the
file can be named.

Save As Opens the Save As dialog box so that the file can be saved with
a new name.

Macro

New Macro Design Opens a new macro file.

Open Macro Design Opens the RPvdsEx macro chooser dialog. The default folder
location to search for macros is C:\TDT\RPvdsEx\Macros.

Page Setup Opens the Page Setup dialog box.

Print Prints the current tabbed window, including all sheets.

Print Preview Switches to Print Preview mode, displaying the circuit diagram as it
will print. This mode provides additional options for viewing sheets.

Print Setup Opens the Print Setup dialog box. Available options depend on the
installed printer(s).

Recent Files
The fourth section of the File menu lists recently used files.
Clicking a file name opens the file. The recent workspaces are also
listed (currently, only the Default workspace is supported).

Exit Closes the application.
Menu and Toolbar Reference

334 RPvdsEx
Edit Menu
The Edit menu includes tools for modifying circuit diagrams.

View Menu
The View menu includes tools for adjusting the window’s display.

Undo Undo will undo the last action. RPvdsEx supports multiple undos.

Redo Redo will reinstate the change that was undone by the last undo.
RPvdsEx supports multiple redos.

Find and Replace

Rename Components
Opens the Change Component Name Dialog box. Enables the user
to implement a text find and replace in the component name field
of components in the current selection, sheet, or circuit.

Change Component
Parameters

Opens the Change Parameter Dialog box. Enables the user to
change the value of a component parameter in the current
selection, sheet, or circuit.

Change Number of
Channels

Opens the Update Number of Channels Dialog box. Enables the
user to change the number of channels as specified in the channel
number parameter of component and macros in the current
selection, sheet, or circuit.

Cut Removes the current selection, allowing it to be pasted in a
subsequent operation.

Copy Copies the current selection, allowing it to be pasted in a
subsequent operation.

Paste Adds the most recently cut or copied selection to the circuit
diagram.

Index

Opens the Indexing Setup dialog box (page 20), which can be
used to increment indexed parameter tags (such as iChan~2) or
time slices. The settings are applied to currently selected
components only.

Preferences Opens the Preferences dialog box. This dialog contains compiler
and control object file settings.

Toolbar Allows toggling the display of selected toolbars.

Status Bar Toggles the display of the status bar on the bottom of the window.

Zoom Zooms in on a pointer position. Click to activate zoom.

Zoom To Fit Zooms to fit the contents of the sheet.

Zoom In Zooms in display.

Zoom Out Zooms out display.

Pan Allows the user to drag the sheet using the mouse.
Menu and Toolbar Reference

RPvdsEx 335
Components Menu
The Components menu is used to place components and links on the RPvdsEx
circuit. The components are grouped into different function types, which can be found
in the RP Component Reference section.

Implement Menu
The Implement menu includes tools for compiling, running, or generating code. It also
allows different devices to be selected and configured.

Helpers
Opens the Select component to place dialog box to the Helpers
category. This category includes important tools for working and
debugging in the RPvdsEx environment.

Macro Tools
Opens the Select component to place dialog box to the Macro
Tools category. This command is only available when working with
a macro circuit (*.rcm).

OpenEx Headers
Opens the Select component to place dialog box to the OpenEx
Headers category. This category contains components designed
exclusively for use in circuits designed for the OpenEx environment.

Multi-Processor

Opens the Select component to place dialog box to the Multi-
processor category. This command is only available when a high
performance processor, such as the RX5, has been specified in the
hardware setup.

Common
Displays a submenu listing the most commonly used components.
Using this menu allow the user to bypass the Select components to
place dialog box.

Component Groups Opens the Select component to place dialog box to the specified
category. Categories group similar components together by function.

Circuit Macros Opens the Macro chooser dialog. This command is not available
when editing a macro circuit.

Device Setup
Opens the Set Hardware Parameters dialog box allowing users to
configure the circuit for the correct RP module. In addition, it allows
access to such properties as the sample rate and time slices.

Build, Load and Run Compiles the DSP code from the circuit diagram, loads the code to
the processor, and runs the code.

Compile Diagram

Compiles the circuit diagram, determining the proper processing
chain order and generating the DSP code. If errors are found in
the circuit diagram, such as links that don't terminate anywhere or
links between incompatible data types, the circuit diagram will be
updated with red links to call attention to the errors.

Load Chain Loads the processing chain (DSP code) to the processor.

Run Processor Runs the loaded processing chain (DSP code) on the processor.

Halt Processor Halts the processing chain on the processor.

Build Control Object Generates Circuit file.
Menu and Toolbar Reference

336 RPvdsEx
Triggers Menu
The Triggers menu allows the user to fire hardware or software triggers from within
the RPvdsEx environment. This is useful for testing circuits.

zTrg-A and zTrg-B are global triggers that are generated on the zBUS. They can
be used to synchronize the start of several chains across multiple zBUS caddies.
zTrig can be set as a pulse or always high or always low. zTrig can be initiated
from RPvdsEx or from a program such as BrainWare or PyschRP.

RPvdsEx supports up to ten software triggers in a circuit, however, only the first four
can be triggered from the RPvdsEx interface.

RPvdsEx Window Menu
The Window menu allows you to reset the toolbars to the default layout.

By default, RPvdsEx v60 and greater uses an RCX combined file
format instead of the legacy two file system (RPX, RCO). With
this preferred file format, the separate control file is no longer
needed and the Build RCO button is intentionally grayed out.

Reverting to the legacy RPX/RCO file system...

1. On the Edit menu, click Preferences.
2. Clear the Embed RCO object file check box.
3. Click OK.

After performing this step, the Build RCO button is enabled and
Circuit files can be created as before.

Generate Code Generates C code, for the processing chain, that can be
incorporated into a custom program.

Processor Select

Displays a submenu listing processor select options. When a multi-
DSP device is specified in the hardware setup, the processor select
submenu is used to select the processor(s) that will be compiled
when the user compiles the circuit.

Pulse zTrg-A Pulses zBus trigger A.

zTrg-A High Sets zBus trigger A high.

zTrg-A Low Sets zBus trigger A low.

Pulse zTrg-B Pulses zBus trigger B.

zTrg-B High Sets zBus trigger B high.

zTrg-B Low Sets zBus trigger B low.

Soft-1 Pulses software trigger one.

Soft-2 Pulses software trigger two.

Soft-3 Pulses software trigger three.

Soft-4 Pulses software trigger four.

Reset Toolbars Arranges all toolbars in the default layout.
Menu and Toolbar Reference

RPvdsEx 337
Toolbars

Main (File)
The Main toolbar (also called the File toolbar) includes standard file operations for
saving, loading, and printing RPvdsEx files and tools for viewing and editing files.

New
Opens a new file.

Open
Opens the Open dialog box so that an existing file can be
opened.

Save
Saves the current file. If the file has not previously been saved,
the Save As dialog box opens so that the file can be named.

Cut
Removes the current selection, allowing it to be pasted in a
subsequent operation.

Copy
Copies the current selection, allowing it to be pasted in a
subsequent operation.

Paste
Adds the most recently cut or copied selection to the circuit
diagram.

Rename
Components

Opens the Change Component Name Dialog box. Enables the user
to implement a text find and replace in the component name field
of components in the current selection, sheet, or circuit.

Change
Component
Parameters

Opens the Change Parameter Dialog box. Enables the user to
change the value of a component parameter in the current
selection, sheet, or circuit.

Change
Number of
Channels

Opens the Update Number of Channels Dialog box. Enables the
user to change the number of channels in the channel number
parameter of component and macros in the current selection,
sheet, or circuit.

Print
Prints the current tabbed window, including all sheet.

About
Display program information, version number, and copyright.

Zoom
Zooms in on a pointer position. Click to activate zoom.

Zoom To Fit
Zooms to fit the contents of the sheet.
Menu and Toolbar Reference

338 RPvdsEx
Implement
The Implement toolbar includes tools for compiling, running, or generating code. It
also allows different devices to be selected and configured.

Zoom In
Zooms in display.

Zoom Out
Zooms out display.

Pan
Allows the user to drag the sheet using the mouse.

Device Setup
Opens the Set Hardware Parameters dialog box allowing users to
configure the circuit for the correct RP module. In addition, it allows
access to such properties as the sample rate and time slices.

Build, Load
and Run

Compiles the DSP code from the circuit diagram, loads the code to
the processor, and runs the code.

Compile
Diagram

Compiles the circuit diagram, determining the proper processing
chain order and generating the DSP code.

Load Chain
Loads the processing chain (DSP code) to the processor.

Run
Processor

Runs the loaded processing chain (DSP code) on the processor.

Halt
Processor

Halts the processing chain on the processor.

Turn Helpers
On

Turn Helpers
Off

Build Control
Object

Generates an RP Control Object (RCO) file.

By default, RPvdsEx v60 and greater uses an RCX combined file
format instead of the legacy two file system (RPX, RCO). With
this preferred file format, the separate control file is no longer
needed and the Build RCO button is intentionally grayed out.

Generate
Code

Generates C code, for the processing chain, that can be
incorporated into a custom program.
Menu and Toolbar Reference

RPvdsEx 339
Processors
The processor selection commands are available from the Implement menu or the
Processor Select toolbar. When a processor is selected, its button will appear
"pressed." Either a single processor or all processors may be selected. Selection of
two, three, or four processors is not supported.

Note: These commands are only available when the device selected in the Set Hardware
Parameters dialog box is an RX device.

Components
Most buttons on this toolbar opens the Select component to place dialog box to the
specified category. Categories group similar components together by function.

Main DSP

Selects main processor

Aux One
Selects first auxiliary processor

Aux Two
Selects second auxiliary processor

Aux Three
Selects third auxiliary processor

Aux Four
Selects fourth auxiliary processor

All DSPs
Selects all processors

Helpers Opens to important tools for working and debugging in the RPvdsEx
environment.

OpenEx
Headers

Opens to components designed exclusively for use in circuits
designed for the OpenEx environment.

Input/Output Opens to input and output components to connect a circuit to the
physical world.

Basic Math Opens to low-level math operations.

Audio
Processing

Opens to components that are related to 3D audio processing.
Menu and Toolbar Reference

340 RPvdsEx
Exponents
and Logs

Opens to typical log and exponential functions as well as a linear-
to-dB and dB-to-linear processes.

Gating
Functions

Opens to components used to gate the onset and offset of signals.

Coefficient
Generators

Opens to components used to calculate the coefficients of specified
high-pass, low-pass, band-pass, or notch filters in real-time.

Their outputs can be connected to the filter coefficient port of a
Biquad filter component.

Buffer
Operations

Opens to components used to create and access data buffers.

Delay
Functions

Opens to components used to create or synchronize intentional
delays.

Neuro
Analysis

Opens to components developed primarily for neurophysiology
applications.

Device
Status

Opens to components to monitor and do math with major system
status values.

Macro Tools This command is only available when working within a macro
circuit.

Multi-
Processor

Opens to components designed for use with multi-processor
devices.

Type
conversion

Opens to components used to convert a signal from one basic data
type to another.

Integer Math Opens to mathematical functions for integer data, allowing bitwise
mathematical operations.

Trigonometry Opens to trigonometric functions.

Waveform
Generators

Opens to components that generate signals on the DSP.

Digital
Filters

Opens to Basic digital filtering tasks.

Counters
and Logic

Opens to counter and logic functions.
Menu and Toolbar Reference

RPvdsEx 341
Common Components
This toolbar provides quick access to commonly used components, allowing the user
to bypass the Select components to place dialog box.

Data
Reduction

Opens to functions to decrease the size of the data set.

Basic
Analysis

Opens to components that analyze various aspects of a signal.

State/Flow
Control

Opens to state and flow components.

Macro Opens the Insert RPvdsEx Macro Dialog Box

Link
Starts link creation. After clicking this button the user can click the
output and input ports of components on the circuit diagram to
create a link.

Iterate
Selects the Iterate function to be added to the circuit diagram.

HopTo
Selects the HopTo helper to be added to the circuit diagram.

HopFrom
Selects the HopFrom helper to be added to the circuit diagram.

zHopTo
Selects the zHopTo component to be added to the circuit diagram.

zHopFrom
Selects the zHop components to be added to the circuit diagram.

ParTag
Right

Selects the right parameter tag to be added to the circuit diagram.

ParTag Left
Selects the left parameter tag to be added to the circuit diagram.

Script Tag

ParWatch
Selects the parameter watch to be added to the circuit diagram.
Menu and Toolbar Reference

342 RPvdsEx
Triggers
The Triggers toolbar allows the user to fire hardware or software triggers from within
the RPvdsEx environment. This is useful for testing circuits.

Graph
Selects the graph to be added to the circuit diagram.

Memo
Selects the memo to be added to the circuit diagram.

zBus A Pulse

zBus A High

zBus A Low

zBus B Pulse

zBus B High

zBus B Low

Software 1

Software 2

Software 3

Software 4
Menu and Toolbar Reference

Part	4:	Troubleshooting

344 RPvdsEx

345
Troubleshooting

RPvdsEx Known Anomalies

General

Moving Between RPvdsEx Circuits

In version 44 and higher, moving between RPvdsEx circuits when one circuit is
running can produce the following error: “zBUSError Call RpxgetCmpPar zError
Specified memory area not valid”. This occurs if a second circuit (to the same
device) is run at the same time. This error also occurs when two RA16 base
stations are connected together and a base station, other than the one connected to
the amplifier, has compiled circuit file loaded to it. The error message cannot be
removed without closing RPvds. End RPvdsEx using Ctrl-Alt-Del, Task Manager ->
Applications, select RPvdsEx and click End Task.

Network Printers

If printers are added to your system, RPvdsEx documents generated before the
printer was installed may take an inordinately long time to load (>10 minutes).
Disconnecting the computer from the Network or uninstalling the printer driver will
usually solve the problem. The file can also be loaded, reduced, copied, and pasted
into a new document.

RA16 Cycle Usage Error

In version 41 and higher, when two RA16s are connected via a fiber optic cable,
under certain conditions, the RA16 connected to an amplifier may display incorrect
cycle usage. RA16s up the chain from the amplifier must all be set to the same
sample rate. If using two RA16s, make sure both have circuits running on them and
that the first circuit run is for the RA16 connected to the amplifier. If only using one
RA16, disconnect the fiber optics to the other base stations.

Technical Support File Format

If you are using version 45 or below you may be unable to open .rpd files provided
by Tech Support. If you cannot upgrade to latest version of RPvdsEx, Tech Support
can send screen captures of the circuit.

RX8 Device Setup

The RX8 allows sample rates up to 100 KHz, however RPvdsEx may allow the user
to enter arbitrary sampling rates above 100 kHz in the RX8 Device Setup. When
entering arbitrary sampling rates in the RPvdsEx Device Setup, enter only sampling
rates that are supported by the device, i.e. up to 100 kHz for the RX8.
Troubleshooting

346 RPvdsEx
Parameters

CmpNo Parameters

Because component numbers are assigned when compiling the circuit; the user must
check the “CmpNo” parameters on components, such as ReadBuf and HrtfCoef, to
make sure they are set to the right value every time the circuit is recompiled. If the
circuit is run with the “CmpNo” parameter set to the wrong value, the circuit will not
work correctly and a hardware reset may be required.

Phase Parameter

The phase parameter of the waveform generator components (Tone, RampTooth, and
SawTooth) must be greater than -180 and less than +180. Any value (including
exactly -180 or +180) outside of these bounds will be set to a phase of zero. If
a phase of exactly 180 is needed, use 179.999 instead. To alternate between
opposite phases, use a ScaleAdd component to flip the sign of the waveform.

Components

State Machine

In v66, the StateMachine component may reset unexpectedly when the circuit is
compiled. Contact TDT for updated version of RPvdsEx.

When Enable is high (=1) and Reset is low (=0) the state of the machine does
not correctly change states even when the correct JmpA and JmpB inputs are set.
The Enable input must be triggered with a rising edge simultaneously with the JmpA
and JmpB input values in order to change states.

Arccos, Arcsin, and Arctan

The Trigonometry components: Arccos, Arcsin, and Arctan have slight rounding errors
and should not be used in applications requiring very precise values, until they are
fixed in a new version. For example: Arccos(-1) should be pi (3.14159), but the
component's output is 3.09164

Bin Rate

BinRate records one spike during each of the first two samples of running the circuit.
The easiest work around is to ignore the first two spikes counted. See “BinRate” on
page 273 for an alternate solution.

Cos2Gate and LinGate

If a Gating component (Cos2Gate or LinGate) is controlled by a Schmitt component,
invalid output values may occur. If a ParWatch is connected to the output of the
gating component, the invalid output value will display as “-1#QNAN”. If the invalid
output occurs consistently, the circuit file should be re-created.

Destination File

The DestinFile component always writes out a 32-bit raw floating-point file, no
matter what file type is specified. Other formats, such as wav and .txt files, are not
supported at this time. A 16-Bit integer format ('. I16') can also be used if the
'Comp to 16' component is used to convert the data to 16 Bit integer format before
transferring it to the destination file.

Feature Search

The Peak, Valley, and Tip conditions in the FeatSrch component are not always
correct for frequencies less than 2 Hz.
Troubleshooting

RPvdsEx 347
Find Frequency

The FindFreq component takes longer to stabilize (>10 sec) when the input
frequency is less than 0.5 Hz. An incorrect value is returned when the input
frequency approaches zero (<0.005 Hz).

FIR and FIR2

Loading a large number of coefficients to an FIR or FIR2 filter can take several
seconds when using a USB PC-to-zBus interface. Because coefficient values are
loaded to data memory, which does not support block read and writes, values must
be loaded from the PC to data memory one value at a time. When using a USB
interface this can take between 1 (USB 2.0) and 5 (USB 1.0) milliseconds for
each write. Coefficients on the order of 1000 points can take over a second to load.

MCFIR and MCFIR2

A memory allocation error in the MCFIR and MCFIR2 components causes erroneous
results if the number of channels is set to be greater than the number of taps.

Modulus

The Modulus component gives incorrect output for some inputs. The problem occurs
when modding a multiple of the Mod parameter, i.e., when doing Kx mod x for
some nonzero integer K. This component should not be used until it is fixed in a
new version.

SimpCount

The SimpCount component runs on every sample, even when it is put into a time
slice.

Tan

The Trigonometry component Tan gives incorrect values and should not be used until
it is fixed in a new version.

WordIn/WordOut

Beginning with TDT Drivers version 57 and RPvdsEx version 5.4, the WordOut and
Word In components are implemented differently. A Bitmask value of -1 should no
longer be used.

Common RPvdsEx Error Messages and Warnings

Error Loading RP Circuit
This often indicates that RPvdsEx is not recognizing your processor. The device
should appear in the hardware diagram in the zBUSmon utility if it is recognized. If
it does not appear, check your connections and cables. If the device is recognized:

• Ensure that your circuit does not contain more than the maximum number of
components for the processor selected in the hardware setup.

• Exit the RPvdsEx program (after saving any circuits) and restart RPvdsEx
(make sure that no other RPvdsEx programs are loaded).
Troubleshooting

348 RPvdsEx
• Exit out of RPvdsEx, reset the hardware (hardware reset button on the
zBUSmon program), restart RPvdsEx, and rerun the circuit.

• Shut off the zBUS device chassis (always remove battery operated units
before powering down) and turn the RP system back on. Restart RPvdsEx.

If you still receive this Error message contact TDT at support@tdt.com.

Data type mismatch:
Input and output ports are color-coded by data type for easy identification. When
necessary, use Type Conversion components to convert the signal to the appropriate
type.

Link cannot originate from 'Input' port or Link cannot
terminate at 'output' port
These messages may occur for several reasons:

• The connection direction goes from a parameter tag to a port. The parameter
tag is a “pointer” to the value in the port. No matter what direction the
parameter tag points, the connection is always from the parameter tag to the
port value.

• The output port connects to a signal input and not a parameter input. This
occurs when you are attempting to make a parameter value a signal. For
example AND, OR, and SUM ports all require that the input is a signal.

Apparent nChannels mismatch between connected components

Mismatched channel number parameters cause warnings (rather than errors) when
the circuit is compiled and do not prevent the circuit from running. If the multi-
channel input includes more channels than specified in nChan, the excess channels
will be ignored. If the multi-channel output has fewer channels than specified in
nChan, then the excess channels will be undefined. When using macros, setting the
channel number parameter in the macro setup ensures that all component channel
numbers in the underlying circuit will match. RPvdsEx also includes a convenient
global replace for channel numbers that can help ensure matching channel numbers
are used.

Components intersecting Iterator

The indicated process is not fully contained in the Iterator box. It may be necessary
to use HopIn/Out pairs to fully contain the process.

MCHop source is not found for component

A multi-channel HopFrom component is missing an input. Ensure that Hop
component labels match, including case, and when indexed hops are used, ensure
that there is a hop for each channel.

zBus Error: Call RPxAddCmp/ zError: Memory Allocation Failure

If you have a Stingray processor this often indicates that the Stingray is undocked,
or has a low battery. Check the status lights to make sure that the Stingray is
docked to the system. All lights should be on. If any light is off or flashing redock
the Stingray. If this fails, do a hardware reset. Go into the zBUSmon program on
your desktop and press the hardware reset button.
Troubleshooting

RPvdsEx 349
Before Debugging a Circuit
The first step in debugging a problem with a circuit is to decide if it is a hardware
or software problem. The steps provided in this section will help you make that
determination. Before you follow these steps make sure that the drivers, RPvdsEx
software, and microcode on the RP/RM/RZ module are the same. (See The
zBUSmon Window in the System 3 Manual.)

Hardware problems are, in general, not affected by the circuit you run. They can
include:

• Bad cables (no sound or noisy signal). The first thing to check are the
patch cables. If they are faulty it will cause many problems with your sys-
tem. (See below for more information on checking for cable problems.)

• Bad DAC's (no sound, distorted signal). Test the output with a simple cir-
cuit such as a tone connected to a DAC out.

• Bad ADC's (noisy signal input, distorted signal). Test the input by playing
a tone out and then a tone in to a serial buffer.

• Bad USB device module (RP modules disappear from zBUSmon). This can
be caused by static discharge. If the RP module disappears while running a
simple circuit (such as tone out) it may mean that the USB module is bad.

If you experience hardware problems, other than cable problems, contact TDT
technical support at 386-462-9622. If you suspect that your problem is software or
cable related, check for cable problems before debugging.

Checking for Cable Problems

To make sure that all the patch (BNC) cables are in good condition, run simple
circuits. The following circuits should work under all conditions:

Tone circuit with a single tone generator and a single channel out. Send the output
from Channel 1 of your module to a headphone buffer, speaker, or Oscilloscope. If
the sound plays out it indicates that the system is working.

The following acquisition circuit uses the Tone circuit above to generate a pulse,
store it in a buffer and send it back to the PC to be graphed.
Troubleshooting

350 RPvdsEx

If this circuit above does not work for you there are three possibilities.

The cables are bad and you should try a new set of cables.

The cables are connected incorrectly. Make sure that IN 1 and OUT 1 are setup
correctly.

The circuit is not running. Connect a parameter watch to the Tone out to see if it
is running and also to the Ch=1 to see if it is acquiring signals.

Common RPvdsEx Problems
This section focuses on common circuit design problems. If the Compile, Load, Run
arrow is grayed out, check your hardware for problems. If you have encountered an
error message, see “Common RPvdsEx Error Messages and Warnings” on
page 347.
Troubleshooting

RPvdsEx 351
Component Incompatibility

When a circuit that was compiled after upgrading both the TDT Drivers and the
microcode does not run or crashes a device, the problem typically relates to the
components in the circuit. Newer versions of RPvdsEx include components that are
not supported on all devices. You might have used a component in the circuit that
is not supported by the device. For example, multi-processor and multi-channel
components will only run on the new multi-DSP devices, such as the RX5, and
RZ2.

Quick Solutions to Common Problems

Serial Buffer does not record or play out.

• Make sure the AccEnab line is set high.

• Make sure that the buffer size is large enough for the signal.

• Make sure that the write Enab is set to 1 to store data to a buffer or 0 to
read.

Pulse Generator does not send out a pulse.

• Check to see if the enable line has been triggered or is set to 1.

Debugging a Circuit

If you have trouble getting a circuit to run there are several things to try:

• Check that you are not exceeding maximum cycle usage. To do this place
a cycle usage component and connect it to a parameter watch.

If you exceed maximum cycle usage you have several options:

• Run at a slower sampling rate, which will give you more cycles (i.e. oper-
ations) per sample

• Run functions that do not have to be calculated on every cycle in a speci-
fied time slice.

• Break up the processing chain so that it runs on more than one RP device
(single processors) or DSP (multi-processors).

• Use the Parameter Watch to inspect values at different points in the circuit.

• Load a Memory Buffer with data and then use the graph to view its con-
tents.

It is possible to crash an RP device (For example, by writing over memory).
Usually you will get an error message indicating difficulty communicating with the RP
device. The only way to recover from this is to exit RPvdsEx, and power down the
zBUS containing the RP device. Wait a few seconds before powering back up.

Note: When the RP2 is powered up, the lights on the Dout LEDs on the RP2 normally
strobe repeatedly from 0 to 3. The Din lights normally stay lit.
Troubleshooting

352 RPvdsEx
Troubleshooting

353
Revision	History
This list includes new components, new features, and bug fixes implemented in each
version.

Version 7.6 – December 2012

The Drivers/RPvdsEx package is now signed. An unsigned drivers warning will no
longer be displayed during installation.

Full 64-bit driver support for USB interface.

Component changes…

Stream_Store_MC and Stream_Store_MC2 now have a Unique Channel Files option
which lets you save individual channels in their own SEV files in the block folder.

Version 7.4 – March 2012

New RPvdsEx Features:

• RPvdsEx includes new Sheet sizing and hardware auto detect features.

• Support for RZ5D, PZ4, IZ2H added.

The following new components and macros have been added to RPvdsEx:

Components…

PulseGen, MCSerSource

Macros…

RZ5D_Control, RZ5D_PZ2_Input, RZ5D_PZ3_Input, Stream_Remote_MC,
RZ_Serial_Rec, RZ_Serial_Send

Version 7.3 – January 2012

The following new components and macros have been added to RPvdsEx:

Components…

PulseGen, MCSerSource

Macro…

RZ5D_Control, RZ5D_PZ2_Input, RZ5D_PZ3_Inout, Stream_Remote_MC,
RZ_Serial_Rec, RZ_Serial_Send, RZ_UDP_Rec, RZ_UDP_Send

Version 7.2 – Jan 3, 2011

The following new components and macros have been added to RPvdsEx:

Components…

MCeStim, MCValList, MCVidAcc, MCLatch, MCForceCC, MCInt16ToFlt, MCInt8ToFlt,
MCPZAcc
Revision History

354 RPvdsEx
Macro…

IZ2_Control, Video_Access

Version 7.1 – May 4, 2010

New RPvdsEx Features:

• Support added for the RZ6 Processor and RS4 Data Streamer

• Drivers will no longer support the (Gigabit) PI5 interface.

• Added support for Optibit cards (PO5/PO5e) on all 64-bit Windows O/Ss
(there is currently no support for a 64-bit USB interface).

The following new components and macros have been added to RPvdsEx:

Components…

MCFloat2Int16, MCFloat2Int8

Macros…

RZ6_AmpIn, RZ6_AudioIn, RZ6_AudioOut, RZ6_Control, and Stream_Server_MC

Version 7.0 – July 8, 2009

New RPvdsEx Features:

• Support added for the RZ5 processor

The following new components and macros have been added to RPvdsEx:

Components…

SortBin8, MCFromSer, MCToSer

Macros…

RZ5_AmpIn, RZ5_AmpIn_MC, RZ5_Control

Version 6.8 – June 6, 2008

New RPvdsEx Features:

• Support added for optimizing printing control.

• Support added for SpikePac OpenEx toolset.

The following new components and macros have been added to RPvdsEx:

Components…

MCSmooth, MCBound

Macros…

PZ3_Control, PZ3_ChanMap, Test_Spike_MC

Version 6.6 – June 22, 2007

Introduced the following features which provide find and replace functionality to
simplify circuit changes and avoid common errors introduced when circuits are
modified:

• Change Component Name Dialog Box

• Change Parameter Dialog Box

• Update Number of Channels Dialog Box
Revision History

RPvdsEx 355
The following new components and macros have been added to RPvdsEx:

Components…

MCFromHop, FromHopPick, MCMatMult, MCSum, and MCMult

Macros…

RZ2_Input_MC, MS16_Control, SH16_Control, Epoc_Store_with_Offset,
Block_Avg_Store_1-4Ch, Block_Avg_Store_MC, RateToSamples, TimeToSamples,
PulseGenN

Version 6.4 ‐ January 23, 2007

Maintenance release in support of changes to the OpenEx Suite.

The following new components and macros have been added to RPvdsEx to support
Z-Series processing:

Components...

TagStore, RMS2, FindSpike2, Convolv, Classify, MCPDec16, MCSampHold

Macros...

SlowStore_1-4Ch, Async_Stream_Store_1-4Ch, Async_Stream_Store_MC

Version 6.2 ‐ September, 8, 2006

Introduced macros tools and a core set of macros targeted primarily to the OpenEx
environment.

Added support for RZ2 Processor and PZ2 Preamplifiers.

The following new components and macros have been added to RPvdsEx to support
Z-Series processing:

Components...

PipeSource, PipeIn, PipeOut, MCPipeIn, MCPipeOut

Macros...

RZ2_Control macro, PZ2_Control macro

Version 6.0 ‐ January 18, 2006

Improved support of High Performance Processor line (RX).

Expanded RX support for analog input/output components.

New RPvdsEx Scripted Tag allows scripting in RPvdsEx circuits.

Macro feature added.

Components...

FIR2, STFIR2, MCFIR, MCFIR2

Version 5.8 ‐ December 21, 2004

Improved support for USB2.0 interfaces and the high performance processors,
including the RX8.

Version 5.7 ‐ June 18, 2004

Included support for the latest version of the Gigabit Interface.
Revision History

356 RPvdsEx
Version 5.3 ‐ January 2004

Components...

SortSpike3, SampSubtract, BinRate, CompTo8D, CompTo16D, Peek, Poke, SeqIndex

Version 5.2 ‐ November 2003

Support for Pentusa Multi-DSP Processors added.

Support for System II removed.

New RPvdsEx Features:

• Better error reporting capabilities. An additional window that reports the num-
ber of components on each processor, along with any errors encountered
during compilation has been added.

• Multi-paging capabilities in the RPvdsEx interface allow complex chains to be
split graphically across multiple sheet – enhancing readability without sacrific-
ing functionality.

File format changed from .rpd to .rpx.

Components...

MCAdcIn, MCBiquad, MCConst, MCDacOut, MCFromSing, MCMerge, MCScale,
MCSerStore, MCToSing, MCDelay, MCzHopPick, Iterate, MCzHopIn, MCzHopOut,
zHopIn, zHopOut

Version 5.0 ‐ July 2003

Support for RM Mobile Processors added.

RPvdsEx bug fixes:

• "Error loading Component specification file: CmpSpec.txt" error fixed. Users
can now double-click an .rpx file to open it.

• Rounding error with FStep fixed.

• 3D Sound example circuits now function load without errors.

• Ceiling and Floor components now give correct results for negative input val-
ues.

Version 4.6

Components...

Tetrode, SnipStore

Version 4.4

Components...

SerSource, SerStore, SortSpike

Version 4.3 ‐ February 2002

Support for Gigabit High-Speed Interface added.

Name of zUSBmon Changed To zBUSmon to indicate addition of the Gigabit
Interface.

Support for XBUS Interface removed.
Revision History

RPvdsEx 357
Version 4.2

Components...

PulseTrain2

Version 3.8 ‐ April 25, 2000

RPvdsEx bug fix:

Rounding error on Tslope

Version 3.7 ‐ December 25, 2000

New RPvdsEx features:

• Error Flag when connecting a parameter to a primary input on a component.

• Information on the Stingray added.

RPvdsEx bug fix:

• Fixes problem with clearing delay lines.

Version 3.6 ‐ November 10, 2000

New RPvdsEx features:

• Parameter watch, Graph and HopIn and HopOut are accessible from the
toolbar

• Helpers On/Off feature for disconnecting portable RP devices

• Context sensitive help for each component

• Additional Device types in the Implement menu (RL2)

• RPProg includes microcode for the RL2 (Stingray)

Components...

FindSpike, PowStat, PowCtrl

Version 3.5 ‐ September 12, 2000

Components...

DeBounce, XOr, CompTo16, CompTo8, ExpFrom16, ExpFrom8, ShufTo16, ShufTo8,
SplitFrom16, SplitFrom8, iXOr, ToBits, FromBits, MuxIn, MuxOut, StateMach, FStep

RPvdsEx bug fixes:

• Fixes problem with JK Flip-Flop

• Fixes problem with high speed data transfer (requires hardware fix)

• Changes TTL delay to milliseconds from microseconds

Version 2.20

First Major release of System 3 Drivers and RPvdsEx.
Revision History

358 RPvdsEx
Revision History

Appendix	A:	Sampling

360 RPvdsEx

361
Sampling

Understanding Aliasing and Imaging...
In all digital data acquisition systems, samples of an analog signal are taken at
discrete time intervals. The accuracy of a sampled signal is directly related to both
the rate at which samples are taken (the sampling rate or sampling frequency) and
the signal's frequency content.

In theory, if a signal's frequency spectrum is band limited to some maximum
frequency, fmax, an exact representation of the signal can be acquired if the
sampling frequency, fs, is at least twice the maximum frequency: fs > 2fmax. This
is known as the Shannon-Nyquist sampling theory, which also states that the original
analog signal can be faithfully reconstructed from these samples.

Analog signals can be band limited by the frequency response of the system or by
filtering. If the analog signal is not adequately band limited for the chosen sampling
frequency, a phenomenon known as aliasing or imaging will occur, resulting in highly
undesirable effects. As the terms suggests, different analog signals sometimes yield
exactly the same samples; this is illustrated by the figure below.

The aliasing effect can occur with broad-band signals where components beyond fs/
2 will result in additive distortions in the spectrum between 0 and fs/2. The figure
below shows a typical broad-band signal spectrum, for example, from an audio
microphone.

The frequency response of the microphone begins to roll off gradually at 15 kHz, and
although most audible information is below about 10 kHz, high-frequency room noise
Sampling

362 RPvdsEx
can extend the signal spectrum appreciably (the microphone's frequency response is
down only 40dB at 60 kHz!). With fs = 100 kHz, the shaded area of the
spectrum is “folded over” about 50 kHz and added to the spectrum of the sampled
signal as indicated by the pass-band reflection area in the figure below.

A 100 kHz sampling frequency is high enough to prevent aliasing from corrupting
most of the sampled signal's frequency spectrum, at least in the audio-frequency
range. However, it is not always possible to sample at a high enough rate to avoid
aliasing.

To minimize the effects of aliasing, while greatly reducing the required sampling
frequency, an anti-aliasing filter can be used to limit the spectral content of the
analog signal. This filter might be a separate analog filter or built in to the device
(as with sigma-delta A/D and D/A converters). The spectrum below shows the
result of filtering the broad-band microphone spectrum with an analog filter.

The frequency at which the filter begins to limit the spectrum is the corner frequency,
fc. The filter used here has a stop-band frequency of 10 kHz, beyond which a
signal attenuation of 60dB is guaranteed. The sampling frequency should be at least
twice the stop-band frequency.

Comparing the filtered and non-filtered spectral plots, it is evident that filtering greatly
reduces the total amount of signal content immediately beyond the 0 to 10 kHz
frequency range of interest; this in turn greatly reduces the sampling frequency
required to avoid aliasing.

During signal reconstruction digital numbers are converted to analog levels by a D/A
converter at discrete time intervals. The analog level of each sample is held constant
for the sampling period until the next sample resulting in a staircase analog output
as shown below:
Sampling

RPvdsEx 363

Here an anti-imaging filter is used to “smooth” out the staircase into a continuous
waveform, shown super-imposed (note the slight delay which results from filtering).
This filter is functionally the same as an anti-aliasing filter, but in this case it
eliminates high-frequency “images” of the signal spectrum caused by the staircase
jumps in reconstruction.
Sampling

364 RPvdsEx
Sampling

RPvdsEx 365
Index
A
AbsVal 108

ADCDelay 191

AdcIn 241

And 159

AndOr 160

Arccos 301

Arcsin 301

Arctan 302

Assigning DSPs 69

AvgBuf 125

AvgBuf2 127

B
BinRate 273

Biquad 205

BitIn 242

BitIn - BitOut 79

BitOut 243

BlockAcc 129

BlockAvg 130

Bound 108

ButCoef 151

ButCoef1 152

C
Ceiling 109

CoefLoad 154

Compare 109

Component Numbering 22

Components Menu 335

CompTo16 177

CompTo16D 178

CompTo8 179

CompTo8D 180

ConstF 323

ConstI 324

ConstL 324

CoreSweepControl 85

Cos 302

Cos2Gate 223

Counter 161

Cycle Usage 58

CycUsage 201

D
DAC and ADC Delays 56

DACDelay 192

DacOut 244

Data Types 25

DataTable 227

dBToLin 219

DeBounce 162

DestinFile 229

Device Setup 18

Distance 303

DistScale 96

Divide 110

DspAssign 263

E
EdgeDetect 163

Edit Menu 334

Exp 220

Exp10 220

Exp2 220

ExpFrom16 181

ExpFrom8 182

ExpN 220

F
FeatSrch 101

File Formats 18

File Menu 333

FindFreq 102
Index

366 RPvdsEx

Index
FindSpike 275

FIR 207

FIR2 208

FIR2D 210

FIRD 210

Float2Int 306

Float2TTL 306

Floor 111

Flt2Stereo 307

FreeDM 202

FreePM 202

FreeXM 202

FromBits 253

FromHopPick 307

FStep 324

G
GaussNoise 325

Graph 230

H
HopFrom 231

HopTo 231

HrtfCoef 97

HrtfFir 97

I
iAbsVal 254

iAnd 254

iBitShift 255, 260

iCompare 255

IIR 210

iLimit 256

iNot 257

Input/Output Delays 55

InstRate 277

Int2Float 308

Int2TTL 308

iOr 257

iScaleAdd 257

Iterate 232

iXor 258

J
JKFlipFlop 163

L
Latch 193

Limit 111

LinGate 224

Links Treated as Components 23

LinRamp 224

LinTodB 221

LN 221

Log10 221

Log2 221

LogN 222

LongDelay 194

LongDynDel 194

M
Macro Symbols 35

Max 112

MCAbsVal 112

MCAdcIn 244

MCBiquad 211

MCBound 113

MCConst 326

MCCpTo16D 185

MCCpTo8D 184

MCDacOut 245

MCDelay 195

MCDelay2 196

MCDotProd 113

MCeStim 246

MCFIR 212

MCFIR2 213

MCFIR2D 214

MCFIRD 215

MCFloat2Int 309

MCFloat2Int16 310

MCFloat2Int8 309

MCForceCC 311

MCFromHop 311

MCFromSer 312

MCFromSing 313

MCInsert4 314

MCInt16ToFlt 315

MCInt2Float 314

MCInt8ToFlt 315

MCLatch 196

MCMap 316

RPvdsEx 367
MCMatMult 114

MCMerge 318

MCMult 117

MCPDec16 186

MCPipeIn 264

MCPipeOut 264

MCSampHold 295

MCScale 116

MCSerSource 134

MCSerStore 132

MCSign 116

MCSmooth 215

MCSubSel 319

MCSum 117

MCToSer 319

MCToSing 320

MCValList 327

MCzHopIn 266

MCzHopOut 266

MCzHopPick 268

MemoBox 236

Min 112

Modulus 118

mplement Menu 335

Mult 121

Multi-Channel Signals 61

MultiProcessor Circuit 69

MultLatch 197

MuxIn 296

MuxOut 297

N
Not 164

O
OneShot 164

Or 165

OxList 292

OxScalar 292

OxSnippet 293

OxStream 293

P
ParaCoef 156

Parameter Access 26

Parameter Tags 54

ParTag 236

ParWatch 237

PipeIn 269

PipeOut 269

PipeSource 270

PlotDec16 183

PowerBand 103

Preferences Dialog Box 40

PulseGen 328

PulseTrain 165

PulseTrain2 167

R
RamBuf 135

RampTooth 328

Random 329

ReadBuf 137

RMS 104

RMS2 104

RSFlipFlop 168

S
SampDelay 198

SampHold 297

Sampling Rates 56

SampSubtract 278

SawTooth 330

ScaleAdd 118

Schmitt 169

Schmitt2 170

ScriptTag 237

SerialBuf 138

SerSource 139

SerStore 145

Sheet Icons 15

Sheet Size 12

ShortDelay 198

ShortDynDel 199

ShufTo16 187

ShufTo8 188

Sign 119

SimpCount 298

Sin 304

Smooth 216
Index

368 RPvdsEx

Index
SnipStore 146

SortBin8 280

SortFlag16 281

SortSpike 282

SortSpike2 284

SortSpike3 286

SourceFile 238

SplitFrom16 189

SplitFrom8 189

SqRoot 119

Square 120

StateMach 299

Stereo2Flt 321

StereoAdc 246

StereoDac 247

StereoFIR2 217

StereoScale 120

StereoSum 121

Store Pooling 72

Sum 121

T
TagStore 148

Tan 304

Tetrode 288

Time Slices 28

TimeStamp 247

ToBits 261

Tone 330

Toolbars 337

TrackMax 105

TrackMin 105

Transfer Rates 60

TrgIn 248

Triggering 48

Triggers Menu 336

TSlope 332

TTL2Float 322

TTL2Int 322

TTLDelay 171

TTLDelay2 171

U
Using the {d} Variable 71

V
View Menu 334

Viewing Sheets 10

W
Window Menu 336

WordIn 249

WordIn - WordOut 79

WordOut 250

WriteBuf 149

X
Xor 172

Z
zHopIn 271

zHopOut 271

Zoom and Pan 11

	RPvdsEx Manual
	Introduction to RPvdsEx
	DSP Basics and System 3
	Digital Signal Processors - DSPs
	Why RPvdsEx?
	The Processing Chain
	Using Compiled Circuit Files

	Before You Begin
	PC System Requirements
	Installation
	Hardware Requirements
	Organization of the Manual

	Part 1: RPvdsEx Fundamentals
	The RPvdsEx Environment
	Overview of the Workspace
	Menus and Toolbars
	The Sheets
	Viewing Sheets
	Zoom and Pan Features
	Adding and Removing Sheets
	Renaming a Sheet
	Changing the Sheet Size
	Choosing a Sheet Size Option
	Duplicating Sheets
	Assigning Sheets to a DSP
	Sheet Icons

	The Build Window
	Output
	Task List

	Compiling Selected Processors
	Accessing the Processor Selection Commands

	File Formats
	Legacy File Formats

	Device Setup
	Automatic Device Detection
	Manual Device Selection
	Hardware Parameters

	The Components
	Component Overview
	Component Numbering
	Links Treated as Components
	Data Types
	Parameter Access Rules
	Dynamic Access
	Static Access
	Data Port Access

	Time Slices
	Setting the Number of Time Slices
	Specifying a Time Slice

	Duplication Information

	Macros
	Macro Overview
	Adding Macros
	Identifying Symbols

	Working with Macros
	Parameter Enabled Inputs
	Parameter Summaries
	OpenEx Macros

	Time Saving RPvdsEx Techniques
	Changing Component Names Systematically
	Changing Parameters Systematically
	Using Indexing
	Selecting Multiple Components

	Using the Preferences Dialog Box
	Updating Number of Channels Systematically
	RPvdsEx Shortcuts
	Placing Links
	Cancel Linking
	Keyboard Shortcuts
	Copying Circuits
	Using Cut, Copy, and Paste

	Part 2: Circuit Design
	Circuit Design Basics
	Creating and Running a Simple Circuit
	Triggering
	Gating a Signal
	Acquiring and Storing the Signal
	Memory Buffers: Serial and Ram Buffers

	Signal Processing
	Filtering Gaussian Noise
	Signal Detector: Splitting the Signal Path
	Scale and Add

	Using Parameter Tags for Software Control

	Hardware Considerations
	Input/Output Delays
	DAC and ADC Delays

	The Sample Clock and Sampling Rates
	Converting Sample Rates
	Sample Rate Synchronization Issues
	Sample Rate Related Timing Issues

	Cycle Usage
	Transferring Data between the Processor and PC
	USB Transfer Rates
	Gigabit Transfer Rates
	Optibit Transfer Rates
	Interface Performance Comparison

	Multi-Channel Circuit Design
	Overview
	The Nature of Multi-Channel Signals
	Working with Multi-Channel Components
	Data Types
	nChan Parameter

	Multi-Channel Circuit Design Strategies
	Acquisition
	Processing and Converting Signals
	Data Storage

	MultiProcessor Circuit Design
	Overview
	Assigning DSPs in RPvdsEx
	Using Sheets
	Using DspAssign

	MultiProcessor Hop Components
	Using the {d} Variable
	Store Pooling

	Multi-Processor Circuit Design Strategies
	Multi-Processor Circuit Design - RZ2
	Multi-processor Pipe Components
	Designing Multi-processor Circuits for the RZ2

	Digital I/O Circuit Design
	Working with BitIn - BitOut
	Working with WordIn - WordOut
	Addressing Digital Bits In A Word
	Addressing Separate Bits in a Byte
	Addressing More Than One Bit in a Byte

	Part 3: Reference
	Macro Reference
	Macro Reference List
	Timing
	Filtering
	Data Saving | Segment_Snip
	Data Saving | Streaming
	Data Saving | Epoch Store
	Data Saving | With Processing | Averaging
	Device | PO8e_Streamer
	Device | RZ2 Processor
	Device | RZ5 Processor
	Device | RZ5D Processor
	Device | RZ6 Processor
	Device | RS4_Data_Streamer
	Device | RV2 Video Processor
	Device | PZ2 Bioamp
	Device | PZ3 Amplifier
	Device | PZ5 NeuroDigitizer
	Device | Medusa4Z Bioamp
	Device | IZ2 Stimulus Isolator
	Device | MS16 Stimulus Isolator
	Device | SH16 Switching Headstage
	Device | UDP Ethernet
	Signal Generators
	Misc Calculators

	Component Reference
	Audio Processing
	HRTF File Format
	Introduction
	HRTF Header Format
	HRTF Filter Organization
	HRTF Filter Coefficient Format

	DistScale
	HrtfCoef
	HrtfFir
	Reverb

	Basic Analysis
	FeatSrch
	FindFreq
	PowerBand
	RMS
	RMS2
	TrackMax
	TrackMin

	Basic Math
	AbsVal
	Bound
	Ceiling
	Compare
	Divide
	Floor
	Limit
	Min
	Max
	MCAbsVal
	MCBound
	MCDotProd
	MCMatMult
	MCScale
	MCSign
	MCSum
	MCMult
	Modulus
	ScaleAdd
	Sign
	SqRoot
	Square
	StereoScale
	StereoSum
	Sum
	Mult

	Buffer Operations
	Comparing Buffer Components
	AvgBuf
	AvgBuf2
	BlockAcc
	BlockAvg
	MCSerStore
	MCSerSource
	RamBuf
	ReadBuf
	SerialBuf
	SerSource
	SerStore
	SnipStore
	TagStore
	WriteBuf

	Coefficient Generators
	ButCoef
	ButCoef1
	CoefLoad
	ParaCoef

	Counters and Logic
	And
	AndOr
	Counter
	DeBounce
	EdgeDetect
	JKFlipFlop
	Not
	OneShot
	Or
	PulseTrain
	PulseTrain2
	PulseTrain3
	RSFlipFlop
	Schmitt
	Schmitt2
	TTLDelay
	TTLDelay2
	Xor

	Data Reduction
	Data Reduction and Scale Factor
	CompTo16
	CompTo16D
	CompTo8
	CompTo8D
	ExpFrom16
	ExpFrom8
	PlotDec16
	MCCpTo8D
	MCCpTo16D
	MCPDec16
	ShufTo16
	ShufTo8
	SplitFrom16
	SplitFrom8

	Delay Functions
	ADCDelay
	DACDelay
	Latch
	LongDelay
	LongDynDel
	MCDelay
	MCDelay2
	MCLatch
	MultLatch
	SampDelay
	ShortDelay
	ShortDynDel

	Device Status
	CycUsage
	FreeDM
	FreePM
	FreeXM

	Digital Filters
	Biquad
	FIR
	FIR2
	FIR2D
	FIRD
	IIR
	MCBiquad
	MCFIR
	MCFIR2
	MCFIR2D
	MCFIRD
	MCSmooth
	Smooth
	StereoFIR2

	Exponents and Logs
	dBToLin
	Exp
	Exp2
	Exp10
	ExpN
	LinTodB
	LN
	Log2
	Log10
	LogN

	Gating Functions
	Cos2Gate
	LinGate
	LinRamp

	Helpers
	DataTable
	DestinFile
	Graph
	HopFrom
	HopTo
	Iterate
	MemoBox
	ParTag
	ParWatch
	ScriptTag
	SourceFile

	Input/Output
	AdcIn
	BitIn
	BitOut
	DacOut
	MCAdcIn
	MCDacOut
	MCeStim
	StereoAdc
	StereoDac
	TimeStamp
	TrgIn
	WordIn
	WordOut

	Integer Math
	FromBits
	iAbsVal
	iAnd
	iBitShift
	iCompare
	iLimit
	iNot
	iOr
	iScaleAdd
	iSign
	iXor
	MCiAnd
	MCiOr
	MCiShift
	ToBits

	Multi-processor
	DspAssign
	MCPipeIn
	MCPipeOut
	MCPipeIn
	MCPipeOut

	MCzHopIn
	MCzHopOut
	MCzHopOut
	MCzHopIn

	MCzHopPick
	PipeIn
	PipeOut
	PipeIn
	PipeOut

	PipeSource
	zHopIn
	zHopOut

	NeuroAnalysis
	BinRate
	FindSpike
	InstRate
	SampSubtract
	SortBin8
	SortFlag16
	SortSpike
	SortSpike2
	SortSpike3
	Tetrode

	OpenEx Headers
	OxBuffer
	OxList
	OxScalar
	OxSnippet
	OxStream

	State/Flow Control
	MCSampHold
	MuxIn
	MuxOut
	SampHold
	SimpCount
	StateMach

	Trigonometry
	Arccos
	Arcsin
	Arctan
	Cos
	Distance
	Sin
	Tan

	Type Conversion
	Float2Int
	Float2TTL
	Flt2Stereo
	FromHopPick
	Int2Float
	Int2TTL
	MCFloat2Int
	MCFloat2Int8
	MCFloat2Int16
	MCForceCC
	MCFromHop
	MCFromSer
	MCFromSing
	MCInsert4
	MCInt2Float
	MCInt16ToFlt
	MCInt8ToFlt
	MCMap
	MCMerge
	MCSubSel
	MCToSer
	MCToSing
	Stereo2Flt
	TTL2Float
	TTL2Int

	Waveform Generators
	ConstF
	ConstI
	ConstL
	FStep
	GaussNoise
	MCConst
	MCValList
	PulseGen
	RampTooth
	Random
	SawTooth
	Tone
	TSlope

	Menu and Toolbar Reference
	Menus
	File Menu
	Edit Menu
	View Menu
	Components Menu
	Implement Menu
	Triggers Menu
	RPvdsEx Window Menu

	Toolbars
	Main (File)
	Implement
	Processors
	Components
	Common Components
	Triggers

	Part 4: Troubleshooting
	Troubleshooting
	RPvdsEx Known Anomalies
	General

	Common RPvdsEx Error Messages and Warnings
	Error Loading RP Circuit
	Data type mismatch:
	Link cannot originate from 'Input' port or Link cannot terminate at 'output' port

	Before Debugging a Circuit
	Common RPvdsEx Problems

	Revision History

	Appendix A: Sampling
	Sampling
	Understanding Aliasing and Imaging...

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

