
OpenDeveloper Reference Manual

 Updated: 9/4/2015

OpenDeveloper Reference Manual

Copyright

©2002-2015 Tucker-Davis Technologies, Inc. (TDT). All rights reserved.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of TDT.

Licenses and Trademarks

Windows 7 is a registered trademark of Microsoft Corporation.

iii

Table of Contents
BEFORE YOU BEGIN: ... 1

REQUIREMENTS ... 1

ORGANIZATION OF THE MANUAL .. 1

OVERVIEW ... 3

TTANKX ... 5

GETTING STARTED .. 5

BASICS: WORKING WITH DATA ... 5

Continuous Data ... 6

Snippet Data ... 7

Epoch Data ... 7

Using Epochs as Filters .. 8

Cleaning Up ... 9

EXAMPLES ..10

Example: Reconstructing Waveforms from Events ..10

Example: Using Filter Arrays ...15

Example: Plotting Data in an Inter-Spike Interval Histogram ..20

GLOBAL PARAMETERS ...23

Global Parameter Defaults ...23

ACCESS CONTROL TTANK X ...26

ConnectServer ...26

ReleaseServer ..26

OpenTank ..26

CloseTank ..27

CheckTank ...27

OpenDeveloper Reference Manual

iv

SelectBlock ..27

RETRIEVING RECORDS TTANK X ..27

ReadWavesV ..27

ReadEventsSimple ...28

ReadEventsV ..28

ParseEvV ...29

ParseEvInfoV ...30

ReadWavesOnTimeRangeV ...32

EPOCHS AND FILTERING TTANK X ..32

CreateEpocIndexing ..32

GetEpocCode ...33

GetEpocsV ...33

GetEpocsExV ...34

GetFilterTolerance ..36

GetValidTimeRangesV ..36

QryEpocAtV ...37

ResetFilters ..37

SetEpocTimeFilterV ..38

SetFilterWithDesc..39

SetFilterWithDescEx ...40

SetFilterArray ..40

SetFilterTolerance ...41

SetRefEpocV ..42

ANNOTATION METHODS TTANK X ..43

AppendNote ...43

Table of Contents

v

GetNote ..43

ReplaceNote ...43

SetNoteIndex ..43

SORTING METHODS TTANK X ...44

GetEvTsqIdx ..44

SaveSortCodes ...44

GetSortCondition ...45

DeleteSortCode..45

GetSortChanMap ...45

SetUseSortName ..46

INFORMATION ACCESS TTANK X ..47

CurBlockMemo ..47

CurBlockName ..47

CurBlockNotes ...47

CurBlockStartTime ..47

CurBlockStopTime ...48

FancyTime ...48

GetCodeSpecs ..48

GetEnumServer..49

GetEnumTank ..49

QueryBlockName ...49

GetError ..50

GetEventCodes ..50

GetGlobalStringV ..50

GetGlobalV ..51

OpenDeveloper Reference Manual

vi

GetHotBlock ..51

GetSortName ...51

GetStatus ...52

GetTankItem ..52

MISC UTILITIES TTANK X ...53

AddTank...53

StringToEvCode ..53

CodeToString ...53

EvTypeToString ...53

DFromToString ...54

ResetGlobals ..54

SetGlobalV ...55

SetGlobalStringV ...55

SetGlobals ...55

C++ METHODS ...57

ReadEvents ..57

ParseEv ...57

QryEpocAt ...58

SetEpocTimeFilter ...58

SetRefEpoc ...58

SetFilter ...59

SPECIAL NOTE FOR PYTHON USERS ...59

TTANKINTERFACES ...61

ABOUT THE TTANKINTERFACES ..61

TTANKINTERFACES EXAMPLE ...61

Table of Contents

vii

About the Example ...61

ServerChanged ..62

TankChanged ...62

BlockChanged ...63

ActEventChanged ..64

RunAnalysis ...64

TDEVACC ...65

ABOUT TDEVACC ..65

ORGANIZATION OF TDEVACC METHODS ...66

SETUP AND CONTROL TDEVACC X ...66

ConnectServer ...66

CheckServerConnection ..66

GetSysMode ...67

SetSysMode ..67

SetTankName ...67

GetTankName ..68

CloseConnection..68

HARDWARE DATA ACCESS TDEVACC X ...68

SetTargetVal ..68

GetTargetVal ...69

WriteTarget ...69

WriteTargetV ...69

WriteTargetVEX ..70

ZeroTarget ...70

ReadTarget ..71

OpenDeveloper Reference Manual

viii

ReadTargetV ..71

ReadTargetVEX ...71

HARDWARE INFORMATION RETRIEVAL TDEVACC X ..72

GetDeviceName ...72

GetDeviceRCO ..73

GetDeviceSF ..73

GetDeviceStatus ..73

GetDeviceType ..74

GetNextTag ..75

GetTargetType ...76

GetTargetSize ..76

EXAMPLES ...77

Recommended Examples ...77

Legacy Examples ...77

KNOWN ANOMALIES ...79

INDEX ..81

1

Before You Begin:

Requirements
TDT Drivers and the OpenEx Suite must be installed before installing OpenDeveloper.

The recommended operating system for all TDT systems is Windows 7®.

Organization of the Manual
This manual is organized in the following sections:

 Overview

 TTankX

 TTankInterfaces

 TDevAcc

3

Overview
OpenDeveloper allows direct access to data stored in TDT’s tank format through custom
applications written in programming languages such as MATLAB, C++ or any language that
supports ActiveX controls. It also allows real-time access to hardware controlled by
OpenWorkbench. OpenDeveloper uses the same interface to OpenEx servers (TTank and
OpenWorkbench) as other OpenEx applications, such as OpenScope and OpenController.

How the TTank Server Works
The TTank server is a database engine allowing multiple clients to access local or networked tank
data. Several applications can run simultaneously on a single or multiple computers and access
information through the server. Selective filters are used to more efficiently extract data based on
time stamp, channel number, sort code (neural spikes) or relation to an epoch event.

How the OpenWorkbench Server Works
Circuit files created in RPvdsEx include parameter tags that OpenWorkbench server can access for
read/write operations. The circuit files are loaded onto the hardware by OpenWorkbench. While
experiments are running, OpenWorkbench server allows client applications direct access to the
parameter tags for real-time analysis and dynamic control of experimental parameters.

OpenDeveloper ActiveX Controls
There are three ActiveX controls that install with OpenDeveloper: TTankX, TDevAccX and
TTankInterfaces.

 TTankX provides access to TTank servers. This is used for extracting data directly into a
custom application for analysis.

 TDevAcc provides real-time access to hardware connected to OpenWorkbench server, as
well as OpenWorkbench system mode (Record, Preview, Standby, and Idle).

 TTankInterfaces offers a set of graphical user interfaces (GUIs) for tank management.
These are the same GUIs seen in OpenScope.

Before Using OpenDeveloper
TDT recommends that users become familiar with how OpenEx works before they use
OpenDeveloper. In particular, users should examine how OpenWorkbench, OpenController and
OpenScope function.

5

TTankX
The TTankX ActiveX control is used to read tank data directly into a custom application for
analysis and/or display. Selective filters are used to more efficiently extract data based on time
stamp, channel number, sort code (neural spikes). Epoch indexing allows you to also create fast
filters based on the epoch events stored in the tank. For example, extracting data around the
occurrence of a stimulation event and only selecting data that occurred at particular stimulation
parameter(s).

This section includes examples of common tasks and best practices, followed by a reference
section of all available TTankX methods. Example code is in MATLAB, unless otherwise stated.

Getting Started
Create an instance of the TTankX control and connect to a TTank server. This can be a TTank
server installed on the local machine or a remote TTank server on another machine. The local
TTank server is called ‘Local’. We need to tell the server our name so it can manage its
connections; we will use ‘Me’ in this example.

TT = actxcontrol('TTank.X');

TT.ConnectServer('Local','Me');

Open a data tank on that server. Typically, provide the entire path to the tank as the first
parameter. The second parameter ‘R’ opens the tank as read-only. This is currently the only
supported option.

TT.OpenTank('C:\TDT\OpenEx\Tanks\DEMOTANK2', 'R');

Select a block within that tank.

TT.SelectBlock('Block-1');

We are now ready to extract data from the selected block.

Best Practice: Avoid rapidly creating and destroying TTankX objects and/or server connections.
This can slow down your application. If possible, only one instance of TTankX should be created
per application.

Basics: Working with Data
There are three types of data we can extract: continuous data, snippet data and epoch data.
Continuous data are sampled at regular intervals from the start of the block to the end. Snippet
data are a fixed number of points triggered by some event such as a threshold crossing. Epoch
data are scalar values that correspond with triggered events.

We use different TTankX methods to read each of these event types.

Note that there is a fixed delay between when the data occurs and when it is available from the
TTank server. This is the cache delay and its value is set in OpenWorkbench properties. The
default delay is six seconds, but may be as high as 30 or as low as two. This delay allows the tank

OpenDeveloper Reference Manual

6

server a buffer so that it can handle variances in data flow. The lower the delay, the closer to
‘real-time’ access you get, but the chance for tank errors while saving data increases.

Continuous Data

The ReadWavesV function is used to read continuous data. It returns an array containing the
waveforms; each column is one channel.

waves = TT.ReadWavesV('Wave');

Instead of a long argument list, the ReadWavesV function uses global parameters to determine
what channel(s) and time ranges to return, among other things. Most global parameters are set
with the SetGlobalV functions. The most commonly used are ‘Channel’, ‘T1’ and ‘T2’.
‘Channel’ is the channel number to extract (the default value is 0, meaning all channels). ‘T1’ is
the start time in seconds (default 0.0). ‘T2’ is the stop time in seconds (default 0.0, which means
read until the end of the block). The following script will return a column of data containing
channel 1 of the store ‘Wave’ between time t1=5s and t2=10s.

TT.SetGlobalV('Channel', 1);

TT.SetGlobalV('T1', 5);

TT.SetGlobalV('T2', 10);

waves = TT.ReadWavesV('Wave');

Often times, calling ReadWavesV with the default global parameters will return NaN (Not a
Number) in MATLAB. This is because the data set requested exceeded the maximum amount of
data the TTank server can return in any one call. The value of this limit is also a global parameter,
‘WavesMemLimit’. The default value of WavesMemLimit is 33554432 bytes (32 MB) but can be
increased by the user.

TT.SetGlobalV('WavesMemLimit', 1024^3);

This increases the maximum limit of data returned in any one call to the tank server to 1GB.

If ReadWavesV still returns NaN then the user must retrieve one channel at a time and concatenate
them into one larger array in MATLAB.

% read first channel

TT.SetGlobalV('Channel', 1);

waves = TT.ReadWavesV('Wave');

% preallocate big array

big_array = [waves zeros(length(waves), nchan-1)];

% read the rest of the channels

for i = 2:nchan

 TT.SetGlobalV('Channel', i);

 waves = TT.ReadWavesV('Wave');

 big_array(:,i) = waves;

end

TTankX

7

Now big_array contains all of the Wave data but with more calls to the TTank server. Similarly,
the user can step through the block using T1 and T2 global parameters and concatenate into a large
MATLAB array.

Snippet Data

The ReadEventsSimple function is used to read snippet data (e.g. neural spikes) into MATLAB.
N = TT.ReadEventsSimple('eNeu');

Instead of returning all of the event information directly, the events are cached locally and the
number of events that fit the parameters is returned (N). We use other functions to parse the
waveform data (ParseEvV) or additional event information such as time stamps, sort codes or
channel number (ParseEvInfoV) from the locally cached data.

The first two parameters of ParseEvV specify the starting index and number of events to return
information from. In most cases we want to return waveform data from all of the cached events.

spikes = TT.ParseEvV(0, N);

The spikes array contains all of the waveform data. Each row is an event and the columns are the
waveform data for that event. The data is ordered by time.

In addition to the waveform data, we want to know when the spikes occurred, what channel they
occurred on and what their sort codes are. ParseEvInfoV can be used to extract this information
from the cached events. The first two parameters are the same as ParseEvV and the last parameter
is used to specify what type of information to retrieve about the events.

channels = TT.ParseEvInfoV(0, N, 4);

sortcodes = TT.ParseEvInfoV(0, N, 5);

timestamps = TT.ParseEvInfoV(0, N, 6);

Each call returns a single row vector with event information in the same order as they appear in
the spikes array. A complete list of possible values for the third parameter of ParseEvInfoV can
be found on page 30.

Like ReadWavesV, the ReadEventsSimple function uses global parameters instead of arguments.
We can use the ‘SortCode’ global parameter to specify a sort code filter. The default value of 0
returns all sort codes.

TT.SetGlobalV('SortCode', 1);

N = TT.ReadEventsSimple('eNeu');

spikes = TT.ParseEvV(0, N);

The spikes array will now only contain events that have a sort code value of 1.

Epoch Data

Epoch data consists of an onset timestamp, a value, and possibly an offset timestamp. Like snippet
data, epoch data can be retrieved from the tank using ReadEventsSimple. However, we are
usually more interested in other data (neural spikes, LFPs) that occurred around the epoch events,
so we extract these interesting events relative to epoch timestamps.

OpenDeveloper Reference Manual

8

TTankServer can create a local index based on epoch events that allows you to query a subset of
records from the tank that meet specific epoch conditions. This means extracting events that
occurred when an epoch was a certain value or range of values, or constructing histograms for a
specific time period around an epoch onset timestamp.

Indexing allows data to be accessed relative to epochs. TTankServer uses a process called
filtering to perform record querying. With typical database engines, SQL or a similar language is
used to query records from a larger record set. TTankServer uses a parametric filtering
methodology for fast, powerful querying capabilities.

The CreateEpocIndexing method is used to build these epoch indexes. This method must be
called each time we select a new block.

TT.CreateEpocIndexing

Best Practice: Use a tilde prefixed to the block name when calling SelectBlock to automatically
call CreateEpocIndexing when the block is selected (e.g. TTX.SelectBlock('~Block-
3');)

Once an epoch index has been created, filtering calls can be made to limit the records (events)
returned by TTankServer. By default no filters are applied, meaning all valid event records are
returned when a Read* command is called.

Once the index is created you can quickly get epoch information relative to some event data. The
code segment below reads all of the event data for channel one, and then queries to find out what
the stimulus frequency (Freq) was when the 13th event occurred.

TT.SetGlobalV('Channel', 1);

N = TT.ReadEventsSimple('eNeu');

timestamps = TT.ParseEvInfoV(0, N, 6);

freq_value = TTX.QryEpocAtV('Freq', timestamps(13), 0);

QryEpocAtV returns the value associated with a specified epoch. One of four values is returned.
Use the last argument to control which value is returned. The options are: the value of the epoch
(0), the onset timestamp of the epoch event (1), the offset timestamp of the epoch event (2), or the
filter status (3). CreateEpocIndexing must be called before QryEpocAtV.

Using Epochs as Filters

After the epoch index is created, you can also issue filter commands before reading data so that the
tank server only caches data that you are interested in.

First, use ResetFilters to ensure that you do not filter data that has already been filtered.

TTX.ResetFilters

Next, a filter is applied with SetFilterWithDescEx so that only event data that occurred when the
‘Freq’ epoch was a specific value will be retrieved in future calls.

TTX.SetFilterWithDescEx('Freq=4000')

TTankX

9

Now a call to ReadEventsSimple returns only events that occur when Freq is 4000. Note that the
global parameter ‘Options’ has to be been changed to ‘FILTERED’ from its default value of
‘ALL’, which would ignore the filter we just set.

TT.SetGlobalStringV('Options','FILTERED');

N = TTX.ReadEventsSimple('Snip')

SetFilterWithDescEx can be called with multiple conditions to apply multiple epoch filters
simultaneously. The Boolean operators ‘and’ and ‘or’ can be used to combine multiple epoch
filters in one statement.

TTX.SetFilterWithDescEx('Freq=1000 or Freq=4000');

N = TTX.ReadEventsSimple('Snip')

Only Snip events that occurred when Freq was 1000 or 4000 are cached in the tank server.

Suppose we want to generate a histogram of ‘Snip’ event timestamps around when the Freq epoch
triggered. We are interested in a time period of one second before the Freq epoch triggered to 2
seconds after it triggered.

TTX.SetFilterWithDescEx('Freq=4000');

TTX.SetEpocTimeFilterV('Freq',-1,3);

N = TTX.ReadEventsSimple('Snip')

Now when we retrieve Snip data the timestamps will be adjusted so they appear from one second
before the Freq event to 2 seconds after. We can create a histogram directly from the retrieved
timestamps.

timestamps = TTX.ParseEvInfoV(0, N, 6);

hist(timestamps, 30);

The GetEpocsV function can be used to directly read epoch data. This function does not use the
global parameters, so it has a longer argument list. In addition to the name of the epoch store, its
other parameters are start time, stop time and maximum number of epochs to return. If stop time
is 0 then all data until the end of the block is read.

epocs = TTX.GetEpocsV('Tick', 0, 0, 10000);

The epocs array contains four rows. The first row is the scalar value associated with the epoch.
The second is the onset time (in seconds). The third is the offset time (in seconds). The fourth row
tells you whether the epoch fits the current filter selection.

Cleaning Up

When working with TTankX, always close your tanks and release your server connection when
you are done.

TT.CloseTank;

TT.ReleaseServer;

These two lines of code should be added at the end of your code.

OpenDeveloper Reference Manual

10

Examples
Several working Matlab example files are provided with the OpenDeveloper installation.
Currently three of these are documented below. The remaining examples are commented in the
Matlab file.

Bydefault, all TTankX examples are installed at:

C:\TDT\OpenEx\Examples\TTankX_Example\Matlab\

TDT recommends starting with the TDT2mat.m and SEV2mat.m examples for extracting
all block data into a matlab structure.

The latest documentation is always available on the TDT website at:
http://www.tdt.com/downloads/sys3docs.htm.

Example: Reconstructing Waveforms from Events

This example demonstrates the steps used to reconstruct waveforms from events. First, data is
filtered based on epoch events. Next, the filtered data is extracted from the tank and waveforms
are built from the events.

The example demonstrates:
 Using global parameters.

 Filtering signal data based on epoch events.

 Matching up data sets with different sampling rates for later display.

Methods used:
 SetGlobalV

 SetGlobalStringV

 ResetFilters

 SetFilterWithDescEx

 ReadWavesV

 GetValidTimeRangesV

 ReadWaveOnTimeRangeV

Example File

C:\TDT\OpenEx\Examples\TTankX_Example\Matlab\WaveReconstruction.m

Accessing the Tank

The first section of the Matlab script connects to the TTank ActiveX control and opens the server,
tank, and block. See TTankX, Getting Started, page 5, for more information.

MyTank = 'C:\TDT\OpenEx\Tanks\DemoTank';

http://www.tdt.com/downloads/sys3docs.htm

TTankX

11

MyBlock = '~Block-2';

TTX = actxcontrol('TTank.X')

TTX.ConnectServer('Local','Me')

TTX.OpenTank(MyTank,'R')

TTX.SelectBlock(MyBlock)

Building an Epoch Index
In this example, when the block is defined, a tilde is appended to the block name (such as
MyBlock = '~Block-2'), serving as a shortcut to call the CreateEpocIndexing method. This
method is used to build epoch indexes which allow data to be accessed relative to epochs.

Using Global Parameters

Global parameters reduce the argument list for each method. TDT sets up default settings for these
method calls, see Global Parameters for more information, page 23. To modify the global
settings, a method call of either SetGlobalV or SetGlobalStringV is generated (depending on the
global variable). The method call sets a global parameter (in this case, the parameter ‘Channel’ is
set to 0 meaning all channels). To set the global parameter for using filtered data, the
SetGlobalStringV method sets the parameter ‘Options’ to FILTERED.

TTX.SetGlobalV('Channel',0);

TTX.SetGlobalStringV('Options','FILTERED');

See page 23, for more information on global parameters.

Resetting filters ensures that you do not filter a subset of your data.

TTX.ResetFilters;

Filtering and Processing Data

All filters are based on epochs. Epochs are scalar variables that are associated with fixed events,
such as a behavioral response or stimulus presentation. In this example, the epochs are information
about auditory stimuli, such as frequency and level. The next line sets the data filters. This
command sets the data filters so that only data that occurred during epochs that had a Freq of 2000
and a Levl of 0 is read.

TTX.SetFilterWithDescEx('Freq=2000 and Levl=0')

ReadWavesV reads back the snippet data and forms a waveform from the points obtained for each
channel.

filtSpikes = TTX.ReadWavesV('Snip');

ReadWavesV returns the events in a matrix. The diagram below illustrates the structure of the data
matrix, with each column containing the waveform data for a channel and rows listing points in
time.

OpenDeveloper Reference Manual

12

 Channels ---------------------------------->

Data at

successive
point of

time
|
|

V

[.

]

In many cases, you'll want to view multiple events along the same axis. The next section of the
code reads data for the Freq epoch so that it can be plotted with the snippet data already extracted.
Before extracting epoch events, you'll need to consider two issues.

First, consider the sampling rates of the events of interest. For scalar data, the data is sampled in
an asynchronous fashion, so there is no native sample rate. Unless specified, epoch events are
extracted using a fixed sampling rate of 100 Hz. In this case, we need to generate a matrix that
interleaves the Epoch event with zeros so that the Y dimension of the snippet and event data
match.

Second, consider the difference in magnitude between the events. In many cases, the events will
differ by orders of magnitude. Viewing the data on the same axis requires conversion of one value
into another. In some cases, it may require scaling the values in the matrix. In other cases it may
require replacing one value by another. In this case, we already know the value of the epoch (it is
the epoch we filtered on) so we replace the value with one of the same magnitude.

Both of these issues can be resolved using some global variables. The global variable FillItem
replaces each data point of the epoch with a fixed value. This fixed value must be specified by
setting the global parameter FillValue. The global variable WaveSF sets the sampling frequency to
24414 (the sampling frequency of the Snip event) so that both data sets can be plotted on the same
X-axis.

TTX.SetGlobals('FillItem=FixedNum;FillValue=0.0004');

TTX.SetGlobalV('WaveSF',24414)

After the global variables are set, ReadWavesV is used to read the epoch data.

filtFreqs = TTX.ReadWavesV('Freq');

After both data sets have been read and returned as Matlab matrices, standard Matlab scripting is
used to set up an array for the time axis and to plot each of the six channels of snippet data (Snip)
in a subplot. Superimposed upon that plot, is a plot of the occurrences of the frequency epoch
(Freq) in red.

TTankX

13

A second way to view the data is to compare filtered data from the same channel across epoch
events. The next section of the script generates a second plot to display data for two channels, with
a subplot for each event.

Keep in mind that the filters and parameters have not been changed since the last ReadWaves call.
The data will once again be read after the same filter of ‘Freq = 2000 and Levl = 0’ is applied. One
global parameter that must be reset is the FillItem parameter. Earlier, this parameter was set to
FixedNum. To ensure that actual values are acquired the next time data is read, it must now be set
to DataPoints.

TTX.SetGlobals('FillItem=DataPoints');

Next, the valid duration of each event (GetValidTimeRangesV) must be established and used to
read back the snippet events for only those valid time ranges. In this example, the task is broken
into three steps. First, GetValidTimeRangesV displays the time range values in the command
window. Second, GetEpocsExV identifies the individual epochs to be read. Finally,
ReadWavesOnTimeRangeV reads the data for each valid time range or epoch.

Ranges = TTX.GetValidTimeRangesV

TimeRanges = TTX.GetEpocsExV('Freq',0)

Chan1 = TTX.ReadWavesOnTimeRangeV('Snip',1);

Chan2 = TTX.ReadWavesOnTimeRangeV('Snip',2);

Note that GetValidTimeRangesV and GetEpocsExV are not required for the use of
ReadWavesOnTimeRangeV. However, if GetEpocsExV is not used, epochs occurring in
succession (without any gap) would be identified as a single time range and would be plotted in a
single subplot.

Note: when viewing the output data in the Matlab command window, the user will notice that
there are three time ranges that occur in succession (22-24 sec, 24-26 sec and 26-28 sec).

The data is read into two separate matrices. Each matrix contains the response from one channel.
Each column of the matrix contains a different epoch event and the rows contain the data points

OpenDeveloper Reference Manual

14

from the waveform for that channel. Note that, to plot the data correctly, times where the events
did not occur are filled with zeros. Times where the events did occur contain the neural response
of the unit. The diagram below illustrates the structure of one of the data matrices.

 Events ---------------------------------->

Data at

successive
point of

time
|
|

V

{.

}
Channel X Filtered On Epoch Event X

This structure facilitates further analysis or plotting. For example, if you wanted to determine the
average response from several stimulus presentations of the frequency and intensity, it would be
simple to sum across the matrix and view the aggregate response.

In this example, standard Matlab scripting is used to plot the data. Each column of the channel one
matrix (the first of seven valid time ranges during which Freq=2000) is displayed in a subplot with
channel two data from the same time range superimposed in a different color on the same subplot.

Finally, the server is closed.

TTX.CloseTank

TTX.ReleaseServer

TTankX

15

Example: Using Filter Arrays

This example describes how to filter data from the OpenEx Tank. Data is filtered by querying the
data tank using special events called Epochs. In OpenDeveloper, we use a three-step process to
filter and load the data to local memory. The first part of the process is to set the filters. In this
example, we use the ActiveX method call SetFilterArray that allows users to build a matrix of
filter settings. Events are filtered into cells of a matrix, with each cell specifying a certain set of
filters. The second part of the process is to read back the events and event information, which is
done with ReadEventsSimple. The final part is to parse the event information for later analysis and
display.

The example demonstrates:
 Filtering signal data based on epoch events.

 Using global settings.

 Constructing filter arrays using multiple SetFilterArray calls.

Methods used:
 SetFilterArray

 ReadEventsSimple

 ParseEvInfoV

 ParseEvV

 SetGlobals

 SetFilterWithDescEx

Example File

C:\TDT\OpenEx\Examples\TTankX_Example\Matlab\FilterArray.m

Accessing the Tank

The first section of the Matlab script connects to the TTank ActiveX control and opens the server,
tank, and block. See TTankX , Getting Started, page 5, for more information.

MyTank = 'C:\TDT\OpenEx\Tanks\DemoTank';

MyBlock = '~Block-2';

TTX = actxcontrol('TTank.X')

TTX.ConnectServer('Local','Me')

TTX.OpenTank(MyTank)

TTX.SelectBlock(MyBlock)

Building an Epoch Index

In this example, when the block is defined, a tilde is appended to the block name (such as
MyBlock = '~Block-2';), serving as a shortcut to call the CreateEpocIndexing method.
This method is used to build epoch indexes which allow data to be accessed relative to epochs.

OpenDeveloper Reference Manual

16

Filtering and Processing Data

All filters are based on epochs. Epochs are scalar variables that are associated with fixed events,
such as a behavioral response or stimulus presentation. In this example the epochs are information
about auditory stimuli, such as frequency and level. The SetFilterArray command is used to set a
filter and to give it an ID along a dimension. Three dimensions (0, 1, and 2) are allowed in all.
Note that in other methods the dimension parameters will be defined as X, Y, and Z. Each filter
has an ID along at least one dimension. Later the IDs will be used to plot the events in a grid, with
each cell of the grid representing the conditions set by a filter.

The first filter is set with the condition Freq=1000 and is given ID 1 along the 0th dimension (x-
Dimension). The first parameter in the argument specifies the dimension, the second specifies the
ID of the filter along that dimension, followed by the filter itself. OpenEx allows users to query
the data tank through an API using common SQL language with Boolean operations such as ‘and’
and ‘or’. The last parameter sets a flag for exclusivity of the filter. Events that fit criteria of
multiple filter settings can be assigned either to the lowest ID number (exclusivity) or to each filter
for which it meets the criteria. Users should consider whether setting this flag will bias their
analysis.
a = TTX.SetFilterArray(0,1,'Freq=1000',0)

b = TTX.SetFilterArray(0,2,'Freq=2000',0)

c = TTX.SetFilterArray(0,3,'Freq=4000',0)

d = TTX.SetFilterArray(0,4,'Freq=8000',0)

e = TTX.SetFilterArray(1,1,'Levl=0',0)

 Dimension 0 (X) ---------------------------->

Dimension
1(Y)

|
|
v

 ID1
Freq=1000

ID2
Freq=2000

ID3
Freq=4000

ID4
Freq=8000

ID1
Levl =0

Freq=1000
and Levl=0

Freq=2000
and Levl=0

Freq=4000
and Levl=0

Freq=8000
and Levl=0

Reading Data

The filtered events in 'Snip' are read from channel one. Here we use the ReadEventsSimple call,
which reads events from the tank into local memory. Users of previous versions of
OpenDeveloper, note that ReadEventsSimple is a simplified version of the ReadEvents call. It has
the same functionality as ReadEventsV, but uses global parameters instead of arguments.

Using Global Parameters

The ReadEventsSimple method uses several global parameters whose default values are not
changed in the example, such as SortCode (default 0, meaning all), T1 and T2 (both default 0,
meaning full time span). Three globals, however, are changed – MaxReturn, Channel and Options.
MaxReturn and Channel refer to the maximum number of events returned and channels extracted.
By default, the global parameter Options is set to ALL, specifying that all events are extracted, not
just filtered or new events. In this case, SetGlobalV is used to set the Options to FILTERED so
that only events that meet the filter criteria will be read.

TTX.SetGlobals('Channel=1; MaxReturn=10000; Options=FILTERED');

TTankX

17

See page 23, for more information on global parameters.

If users need to have more control over the parameters then they should use ReadEvents.
ReadEventsSimple returns the number of events read. So it will return a maximum of 10000
filtered events from channel one.

X = TTX.ReadEventsSimple('Snip');

Next, the program loops through each event that was extracted from channel one of ‘Snip’. Then
the ID of each event along the 0th dimension is extracted using the ParseEvInfoV call. Finally,
each event is extracted.

Within this loop, a grid of plots with one column and four rows (dimensions of the filter array) is
formed. Then each event is plotted in that cell of the grid, which denotes its ID. For example, if an
event has ID 2 along the 0th dimension, then it will be plotted in subplot two. At the end of the
loop, subplot two will have only those events which have 0th dimension ID equal to 2, that is,
those events which satisfy the Freq=2000 filter.

for t = 1:double(x)

 xid = TTX.ParseEvInfoV(t-1,1,11);

 data = TTX.ParseEvV(t-1,0);

 …

end

OpenDeveloper Reference Manual

18

For the next plot, the global parameters are set again, this time with channel being 0 or All, so that
data from all the channels will be viewed.

TTX.SetGlobals('Channel=0; MaxReturn=10000; Options=FILTERED');

Next, the filter is set to Freq=2000, so that only events that occur when the value of the epoch
‘Freq’ is 2000 are extracted.

TTX.SetFilterWithDescEx('Freq=2000')

Again a filter array is created. However, this time events are differentiated by the channels on
which they occurred. Note that each of these will be 'ANDed' with the previous filter, Freq=2000.

a = TTX.SetFilterArray(0,1,'Chan=1',0)

b = TTX.SetFilterArray(0,2,'Chan=2',0)

c = TTX.SetFilterArray(0,3,'Chan=3',0)

After setting up the new filters, the filtered events in 'Snip' from all channels are read again.

x = TTX.ReadEventsSimple('Snip');

Once more the program will loop through each event obtained, extract the x-dimension ID, extract
the waveform itself, and plot the waveform in a subplot based on its ID. At the end of the loop,
each subplot will have only those events which have X-dimension ID corresponding to that
subplot number.

for t = 1:double(x)

 xid = TTX.ParseEvInfoV(t-1,1,11);

 data = TTX.ParseEvV(t-1,0);

 …
end

TTankX

19

Closing the Tank

When all tasks are complete, the tank is closed and the server connection is released.

TTX.CloseTank;

TTX.ReleaseServer;

OpenDeveloper Reference Manual

20

Example: Plotting Data in an Inter-Spike Interval Histogram

This example demonstrates how to access tank data and parse events. Once the data has been read,
events are used to plot the inter-spike intervals (ISI). The ISI histogram is a very commonly used
plot in neurophysiology analysis for determining the number of distinct firing patterns (or
neurons) that have been recorded.

The example demonstrates:
 Reading time stamps for events.

 Using global variables.

 Using time stamp information to calculate and plot an inter-spike interval histogram.

Methods used:
 SetGlobalV

 SetGlobalStringV

 ReadEventsSimple

Example File

C:\TDT\OpenEx\Examples\TTankX_Example\Matlab\InterSpikeInterval.m

Accessing the Data Tank

The first section of the Matlab script connects to the TTank ActiveX control and opens the server,
tank, and block. See TTank, Getting Started, page 5, for more information.

MyTank = 'C:\TDT\OpenEx\Tanks\DemoTank';

MyBlock = '~Block-2';

TTX = actxcontrol('TTank.X')

TTX.ConnectServer('Local','Me')

TTX.OpenTank(MyTank,'R')

TTX.SelectBlock(MyBlock)

TTX.ResetFilters; % Reset all filters

Using Global Parameters and Processing Data

The ReadEventsSimple method in this example uses global parameters. ReadEventsSimple will
use the default values for the global parameters unless they are specified using SetGlobalV or
SetGlobalStringV (depending on the global variable). In this case, SetGlobalV is used to set the
global variable Channel to include only data from channel 1.

Note: Global parameters reduce the argument list that must be specified for methods that use
them. Unless specified, the default settings for these method calls are used (see Global Parameters
for more information, page 23).

TTX.SetGlobalV('Channel',1);

TTankX

21

See page 234, for more information on global parameters.

A simplified version of the ReadEvents method is used to read the Snip event from channel one.
ReadEventsSimple has the same functionality as the older call ReadEventsV, except that it uses
global variables instead of local arguments. The number of events read will be returned. The data
itself and other information will now be available for parsing in local memory.

a = double(TTX.ReadEventsSimple('Snip'));

ParseEvInfoV is used to return the time stamp values for 10000 events. The first argument
specifies the data number offset, the second specifies the number of events to parse, and the last
one indicates what information to parse about the event. In this case, the number 6 specifies the
time stamps. The data is returned in a matrix with a single row.

tstamps = TTX.ParseEvInfoV(0,10000,6);

Creating an Inter-Spike Interval Histogram

The next section of code uses standard Matlab techniques to plot the data in an inter-spike interval
histogram.

First, an array with 3500 zeroes is built to hold the 3500 bins of the histogram.

cache1 = zeros(1,3500);

Next, a loop is generated from 1 to the number of events obtained above.

for i = 1:a-1

Within the loop, the difference between each successive spike is computed.

 delta(i) = tstamps(i+1)-tstamps(i);

Each value is multiplied by 1000 and rounded off so that all values are in milliseconds and the bin
width is 1 ms.

 bin = ceil(delta(i)*1000);

Next, the values must be sorted into the bins. To do this, increment the value of that element of
cache1, which the time stamp falls into. For example, if the time stamp extracted is 0.0399 sec
(39.9 ms), then bin = 40, and we increment the 40th element of cache1. So, the end result was that
an event occurred at approximately 40 ms. Since our bin width is 1 ms, that event should fall into
the 40th bin, and hence the 40th element of cache1 was incremented by 1.

 cache1(1,bin) = cache1(1,bin) + 1;

end

Next, the first 100 values of cache are plotted in a histogram yielding a plot of events with and
inter-stimulus interval less than 100 ms.

bar(cache1(1:100));

OpenDeveloper Reference Manual

22

The figure above shows an inter-stimulus interval plot generated using this example.

Closing the Tank

When all tasks are complete, the tank should be closed and the connection to the server should be
released.

TTX.CloseTank;

TTX.ReleaseServer;

TTankX

23

Global Parameters
Global parameters were included in release 1.54 of OpenDeveloper to minimize the number of
variables in each method call. This minimizes errors in typing and allows users to set parameters
only once for several calls. To make OpenDeveloper backward compatible, the method calls that
use global parameters are defined differently. Global parameters can be set at any point in the
program, and the new value will apply to any subsequent method that uses them. This allows users
to set the value of a parameter across multiple methods and eliminates the need to set parameters
in each method’s argument list.

Global Parameter Defaults

Global parameters are set with default values and need not be declared unless a different value is
desired. The global parameters can be changed using SetGlobals, page 55, SetGlobalV, page 55, or
SetGlobalStringV, page 55.

AutoRefEpoch
Default: 1 (enabled)

Description: When using the call SetEpocTimeFilter, the time stamps of the events are
referenced to the onset of that epoch event. This makes the construction of
histograms easier. If this referencing of time stamps is not desired, then the
AutoRefEpoc global parameter must be set to 0.

Valid values: 0 (disabled) or 1 (enabled)

Channel
Default: 0 (all channels)

Description: Specifies that all channels will be used. Set to some number to specify a channel
number.

Valid values: any non-negative integer

FillItem
Default: ‘DataPoints’

Description: Specifies that the returned matrix for ReadWavesV and similar methods will be
filled with actual data points.

Valid values: ‘Name’ Name of the event

 ‘Channel’ Channel number of the event

 ‘Sort’ Sort code of the event

 ‘Time’ Time stamp of the event

 ‘Freq’ Sampling rate of the event

 ‘xIndex’ Index along the x dimension (used with SetFilterArray)

 ‘yIndex’ Index along the y dimension (used with SetFilterArray)

 ‘zIndex’ Index along the z dimension (used with SetFilterArray)

 ‘FixedNum’ Arbitrarily specified number. The number can be specified
using ‘FillValue’

OpenDeveloper Reference Manual

24

FillValue
Default: 1

Description: If ‘FillItem’ has been specified as ‘FixedNum’, this parameter specifies an
arbitrary number to be inserted into the matrix at the occurrence of each event.

Valid values: any number

MaxReturn
Default: 100000

Description: Specifies the maximum number of events to be returned. Used with
ReadEventsSimple, GetEpocsExV, and GetValidTimeRanges, but not
ReadWaves and similar methods.

Valid values: any positive integer

Options
Default: ‘ALL’

Description: Specifies what subset of data to cache

Valid values: Value Returns

 ‘ALL’ all event records in range

 ‘NEW’ new events that occurred since last read.

 Note: use this option to poll-read a block that is open for
recording

 ‘SAME’ limit the read to the same access bounds as the previous read

 ‘JUSTTIMES’ list of event time stamps

 ‘DOUBLES’ couple with JUSTTIMES to get event time stamps as a list of
doubles

 ‘NODATA’ only caches event information and not waveform data

 ‘FILTERED’ Only events that fit the currently specified filter(s)

 ‘ORDERED’ Orders output based on epoc filters

RespectOffsetEpoc

Default: 1 (enabled)

Description: This affects only buddy epochs or those epochs that have an offset. When set to
1 it will filter out the events that occur after the offset of the buddy epoch, otherwise it will include
all events until the next onset.

Valid values: 0, 1

SortCode
Default: 0 (any)

Description: Specifies the inclusion of spikes with all sort codes. Note: in many OpenEx
applications, 0 is used for unassigned spikes. Here, 0 encompasses all sort codes.

Valid values: integers 0 to 31

TTankX

25

 If using a SortCode generated by OpenSorter, see Known Anomalies, page 79.

T1
Default: 0.0

Description: When events are being extracted, this parameter specifies the starting time (in
seconds) for that extraction.

Valid values: any non-negative value

T2
Default: 0.0

Description: When events are being extracted, this parameter specifies the stopping time (in
seconds) for the extraction. 0.0 is used to specify the end of the block, unless the
number of events exceeds the MaxReturn.

Valid values: any non-negative value

WavesMemLimit
Default: 33554432 (32 MB)

Description: Refers to the maximum memory (in bytes) that can be returned in a single call to
the tank server. Used by ReadWavesV and ReadWavesOnTimeRangeV.

 Note: If the WavesMemLimit is exceeded by a particular call, the method will
return NaN or a negative return value.

Valid values: any positive integer

WaveSF
Default: 0 (use event sampling rate, or 100 if there is no sampling frequency for the

event, such as an epoch event)

Description: Specifies the sampling frequency, in Hz, used to sample a certain event. Used by
ReadWavesV.

Valid values: any non-negative number

WaveSFEvent
Default: 0 (none)

Description: Specifies an event whose sampling frequency is used to sample a certain event.
Useful when you want to display multiple events with different sampling rates
on the same plot with ReadWavesV or ReadWavesOnTimeRangesV.

Valid values: any event name or event code present in the block. Use SetGlobalStringV to set
by event name, use SetGlobalV to set by event code (or to reset to 0).

OpenDeveloper Reference Manual

26

Access Control TTank X

ConnectServer
Description: ConnectServer initiates a connection with a tank server. The connection adds a

client to the server. Before exiting an application the program should release the
connection by calling the ReleaseServer method.

Prototype: Function ConnectServer(ServerName As String,
ClientName As String) As Long

Arguments: ServerName name of the server, typically 'Local'

 ClientName name of the client application added to the server

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample connects to the Local server. The Client name is 'Me'.
 TT = actxcontrol('TTank.X')

 TT.ConnectServer('Local','Me')

Related Calls: ReleaseServer

ReleaseServer
Description: ReleaseServer releases any connected server. This method should be called

when the client is finished with the server, otherwise the server application will
run until the client application is closed.

Prototype: Function ReleaseServer()

Related Calls: ConnectServer

OpenTank
Description: OpenTank opens a tank on the connected server for access of the specified type.

The typical mode is 'R' for reading. ConnectServer must be called before
OpenTank can be called. At the end of the client application use CloseTank to
close the tank. To open a registered tank, use the tank name for the argument
TankName. To open an unregistered tank, use the entire path to the tank.

Prototype: Function OpenTank(TankName As String, AccessMode As
String) As Long

Arguments: TankName name of the tank to open

 AccessMode 'R' (most common) 'W' 'C' 'M'

 read write control monitor

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample connects to the local server with the client name 'Me' and
opens the unregistered tank named MyTank for reading.

 TT.ConnectServer('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\Tanks\MyTank','R')

Related Calls: CloseTank, ConnectServer

TTankX

27

CloseTank
Description: CloseTank closes the open tank for a client.

Prototype: Function CloseTank()

Related Calls: OpenTank, ReleaseServer

CheckTank
Description: CheckTank checks the current status of the tank.

Prototype: Function CheckTank(TankName As String) As Long

Arguments: TankName name of the tank

Returns: 67 (tank closed), 79 (tank open), 82 (tank in record mode)

Related Calls: OpenTank, CloseTank, GetStatus, GetError

SelectBlock
Description: SelectBlock selects a block from the open tank for accessing. Before this is

called ConnectServer and OpenTank must be called.

Prototype: Function SelectBlock(BlockName As String) As Long

Arguments: BlockName name of the block

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample connects to the server, opens a tank, and selects Block-1 from
the opened tank.

 TT.ConnectServer('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\Tanks\MyTank','R')

 TT.SelectBlock('Block-1')

Related Calls: OpenTank, GetHotBlock, ConnectServer

Retrieving Records TTank X

ReadWavesV
Description: ReadWavesV reads continuous data or constructs a continuous waveform from a

series of events (e.g. neural spikes) by filling zeroes in the samples where no
event occurred. Scalar events are, by default, sampled at 100Hz.

 The waveform can be down-sampled or up-sampled by setting the global
parameter ‘WaveSF’ before calling ReadWavesV, or it can be sampled at the
same frequency as an event specified in the global parameter ‘WaveSFEvent’.
This is useful for plotting two different events along the same timeline.

Note: When extracting streaming events, use WaveSF with caution. Inherent
rounding errors make it unsuitable for downsampling this type of event.
However, it can be used for rounding the sampling rate up or down to a
nearby integer value or for upsampling data.

 ReadWavesV does not work with ‘CHAN’ or ‘SORT’ filters.

Prototype: Function ReadWavesV(EventName As String) As Variant

Arguments: EventName four letter event name

OpenDeveloper Reference Manual

28

Globals: Channel, FillItem, FillValue, T1, T2, SortCode, Options, WaveSF,
WaveSFEvent, WavesMemLimit

 If using a SortCode generated by OpenSorter, see Known Anomalies, page 79.

Returns: single precision waveform array

Sample Code: This code sample sets a filter and uses SetGlobals to modify the WaveSFEvent
and Channel global parameters, ensuring that the events can be plotted on the
same timeline.

 TT.SetGlobals('WaveSFEvent=Snip; Channel=1');

 TT.SetFilterWithDescEx('Freq=2000');

 wave = TT.ReadWavesV('Snip');

 freq = TT.ReadWavesV('Freq');

 plot(wave); hold on; plot(freq, 'r');

Related Calls: ReadWavesOnTimeRangeV, ReadEventsSimple

ReadEventsSimple
Description: ReadEventsSimple reads the event records for the specified EventName from

the currently selected block in the currently open tank. The events are cached to
local memory where they can be accessed using ParseEvV and ParseEvInfoV.

Prototype: Function ReadEventsSimple(EventName As String) As
Long

Arguments: EventName four letter event name

Globals: Channel, T1, T2, SortCode, Options, MaxReturn

 If using a SortCode generated by OpenSorter, see Known Anomalies, page 79.

Returns: number of events read

Sample Code: This code sample will set channel and time global parameters and cache all Snip
events that fit those parameters.

 TT.SetGlobals('Channel=1; T1=5; T2=10')

 N = TT.ReadEventsSimple('Snip')

Related Calls: ParseEvV, ParseEvInfoV, ReadWavesV, ReadWavesOnTimeRangeV

ReadEventsV
Description: ReadEventsV is similar to ReadEventsSimple but uses input arguments instead

of global parameters. These additional arguments allow you to limit the access
to a particular channel, sort code, and/or time range. The Options argument
allows the user to select additional access modes.

TTankX

29

Prototype: Function ReadEventsV(MaxRet As Long, TankCode As
String, Channel As Long, SortCode As Long, T1 As
Double, T2 As Double, Options As String) As Long

Arguments:

Long MaxRet maximum number of events to be returned

 Note: if the maximum number is returned it usually indicates
that there were more events to be read.

String TankCode name of event in four character string form

 Note: there is no error checking for valid TankCodes;
incorrectly typed (TankCode is case sensitive) or nonexistent
codes will return NaN or -1.

Long Channel return only records for this channel, or 0 for all channels

Long SortCode return only records with this sort code, or 0 to disregard sort
codes

If using a SortCode generated by OpenSorter, see Known
Anomalies, page 79.

Double T1 return events with time stamp greater than or equal to T1

 Note: use T1 = 0.0 to return events from the start of the block.

Double T2 return events with a time stamp less than T2

 Note: specify T2 = 0.0 to return events to the end of the block.

String Options See Options in global parameters. Options can be combined in
a comma separated list like:

 “JUSTTIMES,DOUBLES”.

Returns: number of events cached to local memory

Sample Code: This code sample reads up to 1000 'Snip' events for channel 13 in Block-45.
 TT.ConnectServer('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\Tanks\SomeTank','R')

 TT.SelectBlock('Block-45')

 NumRecs=TT.ReadEventsV(1000,'Snip',13,0,0,0,'ALL')

 TT.CloseTank

 TT.ReleaseServer

Related Calls: ReadEventsSimple, ReadWavesOnTimeRangeV

ParseEvV
Description: ParseEvV retrieves some or all waveform data for event records cached in local

memory by a call to ReadEventsSimple or ReadEventsV. The RecIndex
parameter is used to specify the first record to access and is zero based. The
function will return zero when the RecIndex is specified beyond the end of the
returned list. Using the RecIndex and nRecs parameters you can retrieve
waveform data for a number of records with just one call.

OpenDeveloper Reference Manual

30

Prototype: Function ParseEvV(RecIndex As Long, nRecs As Long) As
Variant

Arguments: RecIndex Starting index of record(s) for which information is to be
retrieved (0 based)

 nRecs Number of records for which waveform data is to be retrieved.
Pass 0 or 1 to get a single row of data for a single record.

Returns: data in format found in tank

The data is a matrix with the columns being the waveform data and the rows
being the indexed records. If nRecs = 0 the waveform data is returned in a row
array.

Sample Code: Creates an index of Block-45 from MyTank and reads up to 1000 of the Snip
events from time 0 to 47. ParseEvV retrieves the data for the first 10 records.

 TT.ConnectSever('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\Tanks\MyTank','R')

 TT.SelectBlock('Block-45')

 Nrecs = TT.ReadEventsV(1000,'Snip',0,0,0,47,'ALL')

 WaveData = TT.ParseEvV(0,10)

Related Calls: ParseEv, ParseEvInfoV, ReadWavesV, ReadEventsSimple

ParseEvInfoV
Description: ParseEvInfoV is used to retrieve information from events cached using

ReadEventsSimple or ReadEventsV, but not waveform data. Using the
RecIndex and nRecs parameters you can retrieve information about a number of
records with just one call.

Prototype: Function ParseEvInfoV(RecIndex As Long, nRecs As
Long, nItem As Long) As Variant

Arguments:

Long RecIndex starting index of record(s) for which information is to be
retrieved (0 based)

Long nRecs number of records for which information is to be retrieved

 The number specified is the number of rows returned. Use 0 to
have data returned in a single dimensional array or as a scalar.
If RecIndex + nRecs exceeds the end of the cached records,
the extra rows will be returned with zeros.

Long nItem item code for the information item to be returned

 Use 0 to have all items returned as columns in the order shown
below or select one of the following:

TTankX

31

Item Code Returns Item Code Returns
1 size of waveform

data in bytes
8 data format code

2 event type 9 waveform sample
rate in Hz (requires
attached wavefrom
data)

3 event code 10 not used (returns 0)
4 channel number 11 X dimension filter

ID
5 sorting number 12 Y dimension filter

ID
6 time stamp 13 Z dimension filter

ID
7 scalar value (valid

when no waveform
data is attached)

14 fill Item

Returns: The variant form of the data is a matrix with the columns being the data item or
items and rows being the indexed records. The exact format of the returned data
is dependent on which arguments are passed as 0s.

 The possible return scenarios are:

 { nRecs > 0 and nItem > 0 } returns a row matrix containing the requested value
for nRecs records

 { nRecs > 0 and nItem = 0 } returns a row/column matrix with nRecs rows by 10
columns containing all the information values

 { nRecs = 0 and nItem > 0 } returns a single scalar with the specified value for
the specified record index

 { nRecs = 0 and nItem = 0 } returns a row matrix containing the 10 data items
for the specified record index

Sample Code: Creates an index of Block-45 from MyTank and reads up to 1000 Snip events
from time 0 to 47. The ParseEvInfoV returns the time stamp of each event.

 TT.ConnectServer('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\Tanks\MyTank','R')

 TT.SelectBlock('Block-45')

 Nrecs=TT.ReadEventsV(1000,'Snip',0,0,0,47,'ALL')

 TimeStamps=TT.ParseEvInfoV(0,Nrecs,6)

 % to get the channel number for record index 17 call

 chan = TT.ParseEvInfoV(17, 0, 4)

 % to get all the information items for index 17 call

 info = TT.ParseEvInfoV(17, 0, 0)

 % to get all the info for all the records call

 allinfo = TT.ParseEvInfoV(0, Nrecs, 0)

Related Calls: ParseEv, ParseEvV, ReadWavesV, ReadEventsSimple

OpenDeveloper Reference Manual

32

ReadWavesOnTimeRangeV
Description: This call returns events that occur in valid time ranges. (See

GetValidTimeRangesV, page 36, and example below). Note that waves are built
from the events. The events are returned in a variant with each column
representing a valid time range. Note that only one channel can be processed at a
time, because the events for a single channel are returned in a 2-D matrix.

Prototype: Function ReadWavesOnTimeRangeV(EventName As String,
Channel As Long) As Variant

Arguments: EventName four letter event name

 Channel channel number

Globals: T1, T2, FillItem, FillValue, WaveSF, SortCode, WavesMemLimit

 If using a SortCode generated by OpenSorter, see Known Anomalies, page 79.

Returns: matrix of waveform data with each column representing the events in a single
valid interval of time

The length of the longest valid time interval determines the number of rows. If
one of the valid time ranges is longer than the others, it will fill zeros at the end
of the others.

Sample Code: The sample code will return a matrix with two columns, one for valid time range
A and the second for B. The first column will be filled with zeroes at the end, so
that it is the same length as the second column, which contains a longer valid
time range. To get back all the epoch periods as separate columns, use
GetEpocsExV.

MATLAB filt = TT.SetFilterWithDescEx('Freq=2000')

 waves = TT.ReadWavesOnTimeRangeV('Snip', 1)

Related Calls: GetEpocsExV, GetValidTimeRangesV

Note: Python users, see page 59.

Epochs and Filtering TTank X

CreateEpocIndexing
Description: A memory based epoch index must be created for the selected block before a

client application can take advantage of high speed data indexing and filtering
capabilities. After selecting a block for access, using SelectBlock, call
CreateEpocIndexing to instruct TTankServer to build the epoch index. This call
must be made each time a new block is selected.

 A tilde (~) in front of the block name of the SelectBlock method will
automatically generate an epoch index for that block.

TTankX

33

Prototype: Function CreateEpocIndexing() As Long

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample indexes all the epoch events for the selected block.
 TT.ConnectServer('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\Tanks\MyTank','R')

 TT.SelectBlock('Block-45')

 TT.CreateEpocIndexing

 % Tilde Example

 TT.ConnectServer('Local','Me')

 TT.OpenTank('MyTank','R')

 TT.SelectBlock('~Block-45')

Related Calls: SelectBlock

GetEpocCode
Description: GetEpocCode can be used to build a list of epoch code strings currently in the

memory index. The memory index must be built using CreateEpocIndexing.
You must first call using an index of 0, to get the first epoch code, then increase
the index until null is returned.

Prototype: Function GetEpocCode(Index As Long) As String

Arguments:

Long Index index number of the epoch code

Returns:

String epoch code string, such as SwpN or FREQ

Related Calls: CreateEpocIndexing

GetEpocsV
Description: GetEpocsV returns epoch event information from a time region of the block.

This variant form includes a list of four doubles that represent the values of the
epoch, the start time, the stop time, and the filter status. The size of the variant in
bytes is 32 times the number of epochs returned. MaxEpocs determines the
maximum number of epochs to be returned. If the number of epochs is greater
than the MaxEpocs only the maximum number will be returned.

Prototype: Function GetEpocsV(TankCode As String, T1 As Double,
T2 As Double, MaxEpocs As Long) As Variant

Arguments:

String TankCode event name for the epoch

 Note: Note: there is no error checking for valid TankCodes;
incorrectly typed (TankCode is case sensitive) or nonexistent
codes will return NaN or -1.

Double T1 specifies the starting time in the block

OpenDeveloper Reference Manual

34

 Only epochs with start times equal to or greater than T1 will
be returned. Use 0 to get all epochs from the start of the block.

Double T2 specifies the maximum time to return

 Only epochs with a start time less than T2 will be returned.
Use 0 to get all epochs in a block.

Long MaxEpocs maximum number of epochs to return

Also uses the following Global parameters: RepectOffsetEpoc

Returns:

VARIANT row of doubles row of values with information about each epoch returned

 The values are ordered like: [Epoch Value][Start Time][
Stop Time][Filter Selection] ... next epoch.

 For ONset strobe epochs the start times are returned.

 For OFFset strobe epochs the stop times are returned.

 For buddy epochs, the start times and stop times are returned.

Sample Code

Description: Creates an index of Block-45 from MyTank and gets up to the first 1000
frequency epochs.

MATLAB TT.ConnectServer('Local','Me')

 TT.OpenTank(' C:\TDT\OpenEx\Tanks\MyTank','R')

 TT.SelectBlock('Block-45')

 TT.CreateEpocIndexing

 MyEpocs = TT.GetEpocsV('Freq',0,0,1000)

Related Calls: GetEpocsExV, GetValidTimeRangesV, QryEpocAtV

GetEpocsExV
Description: This call will return the valid epoch events that pass through any preceding

filters. It will return a part of, or the entire epoch duration, depending on the
mode argument.

Prototype: Function GetEpocsExV(EpocName As String, Mode As
Long) As Variant

Arguments:

String EpocName four letter epoch name

Long Mode specifies which part of the epoch to return:

 0 all epochs whose onsets occur within the filter epoch

 1 all epochs, occurring at least in part within the filter epochs

 2 only the parts of the epochs that occur within the filter epochs

 Also uses the following Global parameters: MaxReturn, RespectOffsetEpoc, T1,
T2

Returns:

TTankX

35

Variant Variant with each column representing a valid epoch. The first row of each
column denotes the value of the epoch. The second and third rows contain the
start and stop time of each valid epoch duration. Note that these start and stop
times may vary based on the mode specified in the arguments.

Sample Code

Description: This code sample sets a filter of Freq=2000 and returns only those epochs whose
onsets occur within the valid epoch.

MATLAB filt = TT.SetFilterWithDescEx('Freq=2000');

 response = TT.GetEpocsExV('Resp',0);

 Again, a filter of Freq=200 is set. However, this time the mode is set to return

only those parts of the epochs, which occur within the valid epochs.

MATLAB filt = TT.SetFilterWithDescEx('Freq=2000');

 response = TT.GetEpocsExV('Resp',1);

 In this case, only those epochs, which occur at least in part within the valid

epochs are returned.

MATLAB filt = TT.SetFilterWithDescEx(‘Freq=2000’);

 response = TT.GetEpocsExV(‘Resp’,2);

OpenDeveloper Reference Manual

36

Related Calls: CreateEpocIndexing, GetValidTimeRangesV

GetFilterTolerance
Description: Returns the tolerance of the filter. The tolerance is the margin of error allowed

in evaluating the conditions of the filter. For example, if filter tolerance is set to
0.001, and the filter is specified as Freq=2000, any epoch with values between
1998 and 2002 will pass through the filter. The default value is 1e-7.

Prototype: Function GetFilterTolerance() As Long

Returns: tolerance of the filter, or -1 in the absence of a tolerance, e.g. the tank has not
been accessed

Related Calls: SetFilterTolerance

GetValidTimeRangesV
Description: This call returns the valid time ranges based on the preceding filters. If no filters

are specified, then it will return the entire duration of the block as a single valid
time range.

Prototype: Function GetValidTimeRangesV() As Variant

 This method uses the following Global parameters: MaxReturn,
RespectOffsetEpoc

Returns:

Variant The time ranges are returned in the form of a variant with each column
representing a single valid time range. There are always two rows: the first row
containing the start time of the valid time range, and the second row containing
its stop time.

Sample Code: This code sample will return a variant with two columns, each column
containing the start and stop times for a valid time range.

 filt = TT.SetFilterWithDescEx('Freq=2000')

 tranges = TT.GetValidTimeRangesV

 tranges = 5 15

 10 25

TTankX

37

Related Calls: GetEpocsExV, ReadWavesOnTimeRangeV

QryEpocAtV
Description: QryEpocAtV returns information about an epoch event that is active during a

particular time point. One of four values is returned: the value of the epoch, the
start of the epoch event, the end of the epoch event, or the filter status.
CreateEpocIndexing must be called before QryEpocAtV.

Prototype: Function QryEpocAtV(TankCode As String, rTime As
Double, ReqItem As Long) As Variant

Arguments:

String TankCode four character epoch name

 Note: TankCode is case sensitive. Incorrect values will result
in the method returning NaN or a negative return value.

Double rTime requested time, time at which active epoch is to be found

Long ReqItem requested item type:

 0 epoch value

 1 start time of epoch

 2 stop time of epoch

 3 filter status (0 or 1)

Returns: returns one of four items: value, start, stop, or filter status of epoch event (see
ReqItem in the argument statement above)

Sample Code: Creates an index of Block-45 from MyTank and queries the value of epoch Freq
at time 12.45 seconds.

 TT.ConnectServer('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\MyTank','R')

 TT.SelectBlock('~Block-45')

 Epoch = TT.QryEpocAtV('Freq', 12.45, 0)

Related Calls: GetEpocsExV, GetValidTimeRangesV

ResetFilters
Description: Resets the filters to no filtering. This function must be called whenever a new

filtering criterion is to be invoked. For example, if you want all records
concurrent with epoch FREQ = 4000 to be returned first and then all event
records concurrent with FREQ > 8000 to be returned second, you must call
ResetFilters in between the two accesses or all records with either of these
criteria true will be returned on the second access.

OpenDeveloper Reference Manual

38

 Refer to the Using Epochs as Filters section, page 8, for more information and
filtering examples.

Prototype: Function ResetFilters()

Related Calls: SetFilterWithDesc, SetFilterWithDescEx, SetFilterArray, SetEpocTimeFilterV

SetEpocTimeFilterV
Description: SetEpocTimeFilterV sets a filter based on the specified offset and duration. The

time filter is applied relative to the onset of the specified epoch. The functioning
of this call is affected by the RespectOffsetEpoc global parameter. By default, it
will respect the duration of buddy epochs. So, if the duration specified is more
than the length of the buddy epoch, events that occurred after the offset of the
buddy epoch will not pass the filter. To ignore the buddy epoch offset, set
RespectOffsetEpoc to 0.

Each snippet can only be given one timestamp. If the duration window overlaps
with multiple epochs such that a particular event passes multiple filters, the
lowest timestamp that matches these filters will be returned for that event.

 Refer to the Using Epochs as Filters section, page 8, for more information and
filtering examples.

Prototype: Function SetEpocTimeFilterV(EpocName As String,
Offset As Double, Duration As Double) As Long

Arguments: EpocName four letter epoch name

 Offset time in seconds from the onset of the epoch to the onset of the
filter (can be a negative value)

 Duration duration of the filter in seconds (0 specifies the entire duration
of the epoch)

 Also uses the following Global parameters: AutoRefEpoch, RespectOffsetEpoc

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample implements a filter that begins one second before the epoch
onset and has a duration of three seconds. Note that in this case, zeroes will fill
the one second interval before the start of the data.

 Filt = TT.SetEpocTimeFilterV('Freq',-1, 3)

 Note: Python users, see page 59.

 Filt = TT.SetEpocTimeFilterV('Freq',-1, 4)

 In this case, because the duration of the buddy epoch is three seconds, the filter
passes only three of the four seconds specified. To include the entire four
seconds, the RespectOffsetEpoc parameter must be set to 0. Also, note that four

TTankX

39

seconds is the maximum that can be obtained, because that is the duration
between the onset of adjacent epochs.

 Note: To return the filtered data, a record retrieving call (such as ReadEventsV

or ReadWavesV) must be used with the Options global parameter set to
FILTERED.

Related Calls: SetRefEpocV, GetEpocsExV, GetValidTimeRangesV

SetFilterWithDesc
Description: SetFilterWithDesc specifies epoch filters. It functions the same as SetFilter

except that the filter is specified as a string rather than four longs. Refer to
SetFilter, page 59, for more information.

 A filter description contains three parts, (1) epoch name, (2) operation
specification and (3) the value(s). The format looks like: [EpochName]
[OperationSpec] [Value(s)].

 EpochName -- The epoch name is specified as four chars, such as FREQ, SwpN,
or Puff. There are three special keywords that will invoke special non-epoch
driven filtering, they are: TIME, CHAN, and SORT. These three keywords
allow for full filtering function on the time stamp, channel number, and sort
code for event records.

 OperationSpec -- Each of the operations enumerated in the SetFilter description
has a corresponding text character specification. These characters are '=', '<>',
'>=', '<=', '>', and '<'. The meaning of each is based on their use in standard
mathematical equations. One exception is that a value range, or the 'include,
between' function, is specified using the '=' character. For example, FREQ =
1000:8000 is used to specify all FREQs between 1000 and 8000. To specify the
'outside' or not between function use the '<>' characters in the form: FREQ <>
1000:8000.

 Value(s) -- The values parameter is always a decimal number, such as 12.3 or
768. If two numbers are needed (for specifying a range) use a colon between
them, for example 4:44.

 Refer to the Using Epochs as Filters section, page 8, for more information and
filtering examples.

Prototype: Function SetFilterWithDesc(FiltDesc As String) As
Long

Arguments: FilterDesc see description above

OpenDeveloper Reference Manual

40

Returns: number of epoch blocks that met the filter condition

Sample Code: This code sample sets filters to select event records concurrent with |EyeX| < 1.0
and |EyeY| < 1.0

 TT.SelectBlock('MyBlock-45')

 TT.CreateEpocIndexing

 TT.SetFilterWithDesc('EyeX = -1.0:1.0')

 TT.SetFilterWithDesc('EyeY = -1.0:1.0')

Related Calls: SetFilterWithDescEx, SetFilterArray, SetEpocTimeFilterV, SetFilter

SetFilterWithDescEx
Description: Similar to SetFilterWithDesc, sets multiple filters in a single string. If multiple

calls are made, then the last call will overwrite the previous filters. Filters can be
logically chained together using ANDs and/or ORs, up to 5000 characters. Use
‘!=’ instead of ‘<>’ for a not equal comparison.

Prototype: Function SetFilterWithDescEx (Conditions As String)
As Long

Arguments: Conditions string defining the filter

Sample Code: This code sample uses a single string to set a filter for stimulus frequency,
acquisition channel number, and stimulus level.

 Filter = TT.SetFilterWithDescEx('Freq=4000 AND CHAN<5
AND Levl=2')

SetFilterArray
Description: Assigns a filter along one of three dimensions, and gives it an ID along that

dimension. The dimensions are usually assigned the number 0, 1, or 2. They are
often also referred to as X, Y, and Z dimensions.

 The IDs along these dimensions are called X-ID, Y-ID, and Z-ID respectively.
An event that meets the criteria set by one of these filters is assigned the
appropriate filter ID. Multiple instances of this call will generate an array of
filters, which can then be used to sort and display data.

 This method includes an exclusive flag, allowing the user to determine whether
events can be assigned IDs for multiple filters. If the exclusive flag is enabled
(1), only the lowest ID number will be used for each event.

 Refer to the Using Epochs as Filters section, page 8, for more information and
filtering examples.

Prototype: Function SetFilterArray(Dimension As Long, ID As
Long, Conditions As String, Exclusive As Boolean) As
Long

Arguments: Dimension dimension for which the filter is set; specified as 0, 1, or 2 for
X, Y, or Z respectively

 ID filter ID, specified as any number from 1 to 256

 Conditions string defining the filter, for example: ‘Freq=4000 and
Level=2’

TTankX

41

 Note: Boolean operators ‘and’ and ‘or’ are allowed within the
filter string.

 Exclusive flag specifying whether an event which meets the criteria for
multiple filters is assigned to more than one ID

 1 = exclusive (first ID)

 0 = not exclusive (multiple ID’s)

 Also uses the following global parameters: RespectOffsetEpoc

Returns: 0 (fails), 1 (succeeds)

Sample Code: This sample code sets up an array of non-exclusive filters along the X and Y
dimensions. Note that X, and Y dimensions are denoted by 0 and 1 respectively.
After events have passed through the filter array, their X and Y dimension filter
ID properties will be set according to the filter arguments.

 a = TT.SetFilterArray(0,1,'Freq=2000',0)

 b = TT.SetFilterArray(0,2,'Freq=4000',0)

 c = TT.SetFilterArray(1,1,'Levl=2',0)

 d = TT.SetFilterArray(1,2,'Levl=4',0)

 When data is read, an event will be returned only if it passes filters specifying at
least one of the cells of a grid (as pictured below). In other words, if an event
passes the filters Freq=4000 and Levl=2, then it will be assigned the X ID 2, and
Y ID 1 and will be returned in the corresponding cell. If an event passes Levl=4,
but no other filter, then it will not be returned. If an event fits into multiple cells
of the filter array, then it will be read multiple times, each time with a different
set of X and Y IDs. Note that this is not possible when the exclusive flag is set
to 1. In that case, the event would be returned only once, with the lowest set of
IDs possible.

Related Calls: SetFilterWithDescEx, SetEpocTimeFilterV, GetValidTimeRangesV

SetFilterTolerance
Description: Sets the tolerance of the filter. The tolerance is the margin of error allowed in

evaluating the conditions of the filter. For example, if filter tolerance is set to

OpenDeveloper Reference Manual

42

0.001, and the filter is specified as Freq=2000, any epoch with values between
1998 and 2002 will pass through the filter. The default value is 1e-7.

Prototype: Function SetFilterTolerance(Tolerance As Double) As
Long

Arguments: Tolerance tolerance of filters

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample sets the filter tolerance to 0.00001.
 tolerance = TT.SetFilterTolerance(0.00001)

Related Calls: GetFilterTolerance

SetRefEpocV
Description: This function will set a reference epoch, such that all events subsequently

returned will have time stamps relative to the onset of the specified epoch. This
is particularly useful for plotting histograms. This method can be called by the
user, but it is also called automatically by the SetEpocTimeFilterV method.

 When using SetEpocTimeFilterV, the AutoRefEpoch global parameter (enabled
by default) will cause the epoch set by SetRefEpocV to be overwritten by the
epoch set by SetEpocTimeFilterV. To prevent this, set AutoRefEpoch to 0. Also
note that, if a negative offset has been specified in the SetEpocTimeFilterV
arguments, it is possible to get a negative time stamp value.

 These calls are typically used before ReadEventsV and do not affect the results
of the GetValidTimeRangesV or GetEpocsExV calls.

Prototype: Function SetRefEpocV(EpocName As String) As Long

Arguments: EpocName four letter name of an epoch event

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample specifies the Freq epoch as the reference epoch. The time
stamps of all events returned after this call will be relative to this epoch, as seen
in the diagram below.

 a = TT.SetRefEpocV('Freq')

Related Calls: SetEpocTimeFilterV

Note: Python users, see page 59.

TTankX

43

Annotation Methods TTank X
The annotation methods are used to manipulate the note list in each block, and for setting epoch
notes programmatically. To read the note timestamps for each epoch, see ParseEvInfoV page 30
(option 9 is used to access note indices). To filter the data based on note values, see
SetFilterWithDescEx page 40.

AppendNote
Description: Adds a new text note and returns the note index of the new note.

Prototype: Function AppendNote(BSTR noteText) As long

Arguments: noteText text string for newly created note

Returns: index of newly created note

Sample Code: noteIndex = TT.AppendNote('new note text')

GetNote
Description: Returns the note text string associated with the specified note index.

Prototype: Function GetNote(long noteIndex) As BSTR

Arguments: noteIndex note index of desired note string

Returns: note string, or ‘’ if no note was set

Sample Code: noteOneText = TT.GetNote(1)

ReplaceNote
Description: Replaces note text at the specified note index.

Prototype: Function ReplaceNote(long noteIndex, BSTR
newNoteString) As long

Arguments: noteIndex note index

 newNoteString new note string

Returns: 0 (fails), -1 (succeeds)

Sample Code: TT.ReplaceNote(noteOneIndex, 'new note 1')

SetNoteIndex
Description: Adds a note into an epoc store at the epoch data point closest to the specified

timestamp, towards 0. Returns the actual timestamp for the new note.

 Note: CreateEpocIndexing must be called after the block is opened for this to
work.

OpenDeveloper Reference Manual

44

Prototype: Function SetNoteIndex(BSTR storeName, double
timestamp, long noteIndex) As double

Arguments: storeName store name

 timestamp time stamp of desired note location

 noteIndex note index

Returns: actual not location if successful, -1 on failure

Sample Code: TT.CreateEpocIndexing;

TT.SetNoteIndex('Tick', 10, noteIndex);

Sorting Methods TTank X
The sorting methods are used to create a sortID that is stored in the tank, and specify which sortID
to use when filtering using the ‘SortCode’ parameter. Multiple sortIDs can be saved into the tank.
The default is TankSort. OpenSorter can create sortIDs and users writing custom analysis routines
can save their sort codes into the tank using the SaveSortCodes method.

The format necessary for the methods is a row vector which, when passed to the SaveSortCodes
method, will associate each index and its paired neighbor as a set of an event index and sort code.

For example, the vector [5, 2, 6, 1, 7, 2, 8, 1] will have four event indexes 5,6,7,8 and four sort
codes 2,1,2,1. When passed to SaveSortCodes the method will classify these indexes with their
paired sort codes and save them to a user defined sortID.

GetEvTsqIdx
Description: Returns an index array (in long) which contains the events distribution in the

*.tsq file. This method should be called immediately after ReadEventsV. The
options parameter in the ReadEventsV call MUST be set to “IDXPSQ” in order
for the GetEvTsqIdx method to return the correct index array.

Prototype: Function GetEvTsqIdx() As Variant

Returns: array of indicies

Sample Code: N = TT.ReadEventsV(10000,'Snip',1,0,0,0,'IDXPSQ')

 IndexArray = TT.GetEvTsqIdx

SaveSortCodes
Description: This method saves all sorting information to a user defined sortID.

Prototype: Function SaveSortCodes(BSTR SortName, BSTR SnipName,
long IdxChan, BSTR SortCondition, VARIANT
SortCodeArray) As Long

Arguments: SortName name of the newly created sortID

 SnipName name of the event in four character string form

 IdxChan target channel that the sortID saves the events and sort codes to

TTankX

45

 SortCondition user-defined string (such as the algorithm used) that can later
be retrieved using the method GetSortCondition or viewed in
OpenSorter

 SortCodeArray vector that contains each event index and its paired sortcode as
described above; must be of type int32

Returns: 0 (fails), 1 (succeeds)

GetSortCondition
Description: Returns the defined sort condition associated with the specified sortID.

Prototype: Function GetSortCondition(BSTR SortName, BSTR
SnipName, long IdxChan) As BSTR

Arguments: SortName name of sortID to retrieve sort condition for

 SnipName name of the event in four character string form

 IdxChan target channel of desired sort condition string

 SortCondition user-defined string (such as the algorithm used) that can later
be retrieved using the method GetSortCondition or viewed in
OpenSorter

 SortCodeArray vector that contains each event index and its paired sortcode as
described above

Returns: sort condition string, or ‘’ if no sort conditions were set

DeleteSortCode
Description: This method is used to delete a single channel’s sort codes from the desired

sortID. This is equivalent to right-clicking a sorted channel in OpenSorter,
clicking Delete and removing the check from that channel. Note that only a
single channel may be deleted in one call to this method and no sortID can be
deleted. You may use the GetSortChanMap method to verify that the target
channel’s sort codes were indeed removed.

Prototype: Function DeleteSortCode(BSTR SortName, BSTR SnipName,
long IdxChan) As Long

Arguments: SortName name of sortID to retrieve sort condition for

 SnipName name of the event in four character string form

 IdxChan target channel of desired sort condition string

Returns: 0 (fails), 1 (succeeds)

GetSortChanMap
Description: This method returns a 1024 point vector which indicates which channel(s) of the

specified sortID and event name are sorted (1) or unsorted (0). Note that this
vector matrix begins its index at channel 0 which does not exist. You may
format the returned vector matrix to exclude the first entry or simply just ignore
it. If this method is called after a DeleteSortCode call to a specified channel, the
same sortID will return a 0 for that channel’s index (again remember that the
first index is disregarded).

Prototype: Function GetSortChanMap(BSTR SortName, BSTR SnipName)
As Variant

OpenDeveloper Reference Manual

46

Arguments: SortName name of sortID to retrieve sort condition for

 SnipName name of the event in four character string form

Returns: 1024 column array indicating which channels are sorted

SetUseSortName
Description: SetUseSortName sets the sort file used for OpenDeveloper calls that retrieve

events like ReadEventsV. The sort code file will be set if the event name
matches and the desired channel has a sort named sortID. If this function is not
used , the event name does not match, or of the sort name sortID is not present,
this function has no effect and the original sort file from the online tank sort is
used.

Prototype: Function SetUseSortName(sortID As String) As Long

Arguments: sortID sort ID given in OpenSorter (the original online tank sort is always
named TankSort)

Returns: 0 (fails), 1 (succeeds)

Sample Code: This sample reads Snip events of channel = 1and sort code = 1 from the sort set
saved as “Sort1”.

 SetSort1 = TT.SetUseSortName('Sort1')

 Filter = TT.SetFilterWithDescEx('sort=1')

 AllSort1 =
TT.ReadEventsV(1000,'Snip',1,0,0.0,0.0,'FILTERED')

 The following example assumes a tank with online sort code named TankSort
and sorts generated in OpenSorter named Sort1, Sort2 and Sort3.

 For a hypothetical data set, the TankSort sort file has 100 Snip events for each
sort code; 1, 2 and 3. Since a different sorting criterion was used for Sort1, this
sort file has 50 Snip events for sort code 1 and 2 and 200 events for sort code 3.

 If ReadEventsV (Snip, sort code 1) is called before applying SetUseSortName,
100 events will be returned. If SetUseSortName (Sort1) is called before calling
ReadEventsV (Snip, sort code 1), the sort code file for Sort1 will be applied and
50 events will be returned.

 If using a SortCode generated by OpenSorter, see Known Anomalies, page 79.

TTankX

47

Information Access TTank X

CurBlockMemo
Description: CurBlockMemo returns the memo associated with the currently selected block.

If no memo was specified, a null string is returned.

Prototype: Function CurBlockMemo() As String

Returns: returns memo in string or null string if no block is currently selected or if no
memo was specified when the block was created

CurBlockName
Description: CurBlockName returns the name of the currently selected block.

Prototype: Function CurBlockName() As String

Returns: block name or null string if no block is currently selected

CurBlockNotes
Description: CurBlockNotes returns notes associated with the currently selected block. The

notes for each store in the block include: the store name, number of points,
sample frequency, number of channels and other information.

 Note: This method is not supported by Legacy Tanks.

Prototype: Function CurBlockNotes() As String

Returns:

String StoreName name of each store

 Enabled enable status of store

 CircType circuit type

 NumChan number of channels

 StrobeMode onset/offset strobe

 StrobeBuddy buddy epoch if applicable

 SecTag secondary tag information if applicable

 NumPoints number of points

 DataFormat data format (0: float, 1: 32-bit integer, 2: short, 3: byte)

 SampleFreq sample frequency

CurBlockStartTime
Description: CurBlockStartTime returns the start time of the selected block in seconds. The

returned value is the elapsed time in seconds from 12:00 AM January 1st, 1970
to the start of the block. Pass the result through FancyTime to convert the result
into a date/time string.

OpenDeveloper Reference Manual

48

Prototype: Function CurBlockStartTime() As Double

Returns: block start time in seconds

Sample Code: This code sample returns the current block start time and then passes the result
through FancyTime to return a more readable value.

 start = TT.CurBlockStartTime

 formstart = TT.FancyTime(start ,'D/O/Y H:M:S.U')

Related Calls: CurBlockStopTime, FancyTime

CurBlockStopTime
Description: CurBlockStopTime returns the stop time of the selected block in seconds. The

returned value is the elapsed time in seconds from 12:00 AM January 1st, 1970
to the end of the block. Pass the result through FancyTime to convert the result
into a date/time string.

Prototype: Function CurBlockStopTime() As Double

Returns: block stop time in seconds

Sample Code: This code sample returns the current block stop time and then passes the result
through FancyTime to return a more readable value.

 stop = TT.CurBlockStopTime

 formstop = TT.FancyTime(stop ,'D/O/Y H:M:S.U')

Related Calls: CurBlockStartTime, FancyTime

FancyTime
Description: FancyTime converts a time in double format to string format based on the user’s

specifications. The input argument Time is assumed to be the total elapsed time
from 12:00 AM January 1st, 1970 up to the event of interest.

Prototype: Function FancyTime(Time As Double, Format As String)
As String

Arguments: Time tank time in double format

 Format format for returned value

Year Month Day Hours Minutes Seconds frac/Sec D of W

Y O D H M S U W

Returns: time in string format with user specified formatting

Sample Code: This code sample returns the time in the format ‘Date, Time, Day of Week’ e.g.
‘01/Dec/2010 10:04:23.63 Fri’ Using characters such as ‘/’, ‘:’ ‘.’ and ‘ ‘ further
delineate the string.

 start = TT.CurBlockStartTime

 formstart = TT.FancyTime(start ,'D/O/Y H:M:S.U W')

GetCodeSpecs
Description: GetCodeSpecs (get code specifications) queries the block and returns the event

record specifications for the event code specified. If successful the following
properties within the TTankX control are assigned values:

TTankX

49

 EvChannel -- channel for first record found

 EvDataSize -- size of record in 32 bit chunks

 EvDForm -- waveform data format code (see DFromToString for more
information)

 EvSampFreq -- sampling frequency of waveform data

 EvType -- record type code (see EvTypeToString for more information)

Prototype: Function GetCodeSpecs(EvCode As Long) As Long

Arguments: EvCode event code in long format

Returns: 0 (fails), 1 (succeeds)

Related Calls: ParseEvInfoV

GetEnumServer
Description: GetEnumServer returns servers that are enumerated (registered) on your

computer. 0 is returned when no more servers are found. Use this function to
build a list of enumerated servers on your computer. To get the first server
(typically 'Local') use an index of 0. Then increase the index until null is
returned.

Prototype: Function GetEnumServer(Index As Long) As String

Arguments: Index server index (zero based)

Returns: name of server at specified index, or null string if no server at that index

Sample Code: This code sample gets the server name at index zero.
 servname = TT.GetEnumServer(0)

Related Calls: GetEnumTanks, QueryBlockName, GetHotBlock

GetEnumTank
Description: GetEnumTank is used to build a list of tanks enumerated (registered) on the

connected server. To get the first tank use an index of 0. Then call with
increasing indexes until null is returned.

Prototype: Function GetEnumTank(Index As Long) As String

Arguments: Index position in the registry (zero based)

Returns: name of tank at specified index, or null string if no tank at that index

Sample Code: This code sample gets the tank at index 0 of the registry.
 tankname = T.GetEnumTank(0)

Related Calls: GetEnumServer, QueryBlockName, GetHotBlock

QueryBlockName
Description: QueryBlockName returns the block name for a given block index. This function

can be used to build a list of blocks within a tank. The first call must be made
with BlockNumber of 0, then the index can be increased until null is returned.

Prototype: Function QueryBlockName(BlockNumber As Long) As
String

OpenDeveloper Reference Manual

50

Arguments: BlockNumber block number (zero based)

Returns: name of block at specified index, or null string if no block at that index

Sample Code: This code sample returns the name of the 45th block and then selects it for
access. If there are less than 45 blocks in the tank a null string is returned.

 block = TT.QueryBlockName(45)

 TT.SelectBlock(block)

Related Calls: GetEnumTank, GetEnumServer, GetHotBlock

GetError
Description: GetError retrieves any pending error string or null if there is no error pending.

Prototype: Function GetError() As String

Returns: error message string or null

Sample Code: This code checks for pending error
 if TT.OpenTank('C:\TDT\OpenEx\Tanks\MyTank','R')==0

 errmess = TT.GetError

 end

GetEventCodes
Description: Returns a list of valid long integer event codes for the selected block that match

the specified event type.

Prototype: Function GetEventCodes(EvType As Long) As Variant

Arguments: EventType event type code or 0 for all event types.

Returns: lists of all the codes

Sample Code: This code displays all stores that match the format of the ‘Tick’ data store
 N = TT.ReadEventsSimple('Tick');

 evtype = TT.ParseEvInfoV(0, 0, 2);

 evcodes = TT.GetEventCodes(evtype);

 for i = 1:length(evcodes)

 TT.CodeToString(evcodes(i))

 end

GetGlobalStringV
Description: This call will return the current string value of the specified global parameter.

Note that this call supports only string parameters.

Prototype: Function GetGlobalStringV(GlobalName As String) As
String

Arguments: GlobalName global parameter name

Returns: current value of the specified global parameter

Sample Code: This code sample returns the value of the global parameter, Options.

TTankX

51

 TT.GetGlobalStringV('Options')

Related Calls: GetGlobalV, SetGlobalV, SetGlobalStringV, SetGlobals, ResetGlobals

Note: Python users, see page 59.

GetGlobalV
Description: This call will return the current value of the specified global parameter.

Prototype: Function GetGlobalV(GlobalName As String) As Long

Arguments: GlobalName global parameter name

Returns: current value of the specified global parameter

Sample Code: This code sample returns the current value for the global parameters, Channel
and T2.

 TT.GetGlobalV('Channel')

 TT.GetGlobalV('T2')

Related Calls: SetGlobalV, SetGlobalStringV, SetGlobals, ResetGlobals

Note: Python users, see page 59.

GetHotBlock
Description: Returns the block that is being recorded into the opened tank. If no block is open

for recording a null string is returned.

Prototype: Function GetHotBlock() As String

Returns: name of block being recorded into

Sample Code: This code sample connects to the local server, opens a tank for reading and
returns the block name of the block currently recorded to (if any).

 TT.ConnectServer('Local','Me')

 TT.OpenTank('C:\TDT\OpenEx\Tanks\DEMOTANK2’,'R')

 recblock = TT.GetHotBlock

Related Calls: GetEnumTanks, GetEnumServer, QueryBlockName

GetSortName
Description: GetSortName retrieves the sort IDs present for the given event name in the

currently selected block. The sort IDs are returned in alphabetical order as the
input argument idxSortID is incremented. If no sort IDs are present, an empty
string is returned at index zero.

Prototype: Function GetSortName(eventName As String, idxSortID
As Long) As String

Arguments: eventName event name

 idxSortID sort ID

Returns: sortID for the given index and event name

Sample Code: This code sample displays each sort ID for the Snip event in the currently
selected block.

 idx = 0;

OpenDeveloper Reference Manual

52

 sortid = 'temp';

 while ~isempty(sortid)

 sortid = TT.GetSortName('Snip',idx)

 idx = idx+1;

 end

GetStatus
Description: Used to obtain state information about an open tank.

Prototype: Function GetStatus(StatCode As Long) As Long

Arguments: StatCode status code for item to be retrieved

Defined Variable Function Integer
STAT_TANKSTATE tank state (R,W,M,C) 0

STAT_CACHEUSAGE percentage of cache in use 1

STAT_CACHEDEPTH amount of memory allocated in
cache

2

STAT_CACHECOLLIDE number of collisions in the cache 3

STAT_ORDERERROR number of ordering errors 4

STAT_EVRATE event rate (number of events stored
to tank per second)

5

STAT_DATARATE data rate (number of bytes stored to
tank per second)

6

Returns: requested value or -1 if operation failed

Sample Code: This code sample returns the event rate for the opened tank.
 TT.SelectBlock('Block-1')

 evrate = TT.GetStatus(5)

GetTankItem
Description: GetTankItem returns the path or the tank version for the tank provided in

TankName. This function is only valid with enumerated or registered tanks.

Prototype: Function GetTankItem(TankName As String, ItemCode As
String) As String

Arguments: TankName name of the enumerated tank

 ItemCode ‘PT’ returns path to tank

 ‘VERSION’ returns the version of the tank or a null string if
the tank does not exist

Returns: ItemCode Returns

 ‘PT’ Path to the given tank

 ‘VERSION’ ‘20’ new format tank

 ‘10’ legacy tank

 ‘’ tank does not exist

TTankX

53

Sample Code: This code sample returns the path to the given registered tank.
 path = TT.GetTankItem('DemoTank2','PT')

Misc Utilities TTank X

AddTank
Description: AddTank creates a new data tank.

Prototype: Function AddTank(TankName As String, FilePath As
String) As Long

Arguments: TankName name of the new tank

FilePath path to the new tank location

 Note: prefix the path with ‘REGISTER@’ in order to register
the tank at that path

Returns: 0 (fails), 1 (succeeds)

Sample Code: % create tank DEMOTANK3 without registering it

 TT.AddTank('DEMOTANK3','C:\TDT\OpenEx\Tanks')

% or create and register DEMOTANK3

 TT.AddTank('DEMOTANK3','REGISTER@C:\TDT\OpenEx\Tanks'
)

StringToEvCode
Description: StringToEvCode converts a four character string to its corresponding event code

in long integer format. This call is used to obtain epoch codes required for
SetFilter. This is the complement of CodeToString.

Prototype: Function StringToEvCode(EvCode As String) As Long

Arguments: EvCode event code in four character string format

Returns: the event code in long value format

Related Calls: CodeToString

CodeToString
Description: CodeToString converts a long integer event code to a four character string. This

is the complement of StringToEvCode.

Prototype: Function CodeToString(EvCode As Long) As String

Arguments: EvCode event code in long format

Returns: A four character string for the event code

Related Calls: StringToEvCode

EvTypeToString
Description: EvTypeToString returns a string description for event type codes. An event type

is the type of event, such as snippet, strobe, or streamed data.

Prototype: Function EvTypeToString(evTypeCode As Long) As String

OpenDeveloper Reference Manual

54

Arguments: evTypeCode Event code stored in event header

Returns: A string description for the data format (below)

Event Type Input Hex Returns

Unknown 0x0000 "Unknown"

Strobe ON 0x0101 "Strobe+"

Strobe OFF 0x0102 "Strobe-"

Scalar 0x0201 "Scalar"

Stream 0x8101 "Stream"

Snip 0x8201 "Snip"

Marker 0x8801 "Mark"

has associated
waveform data

0x8000 "HasData"

Sample Code: This code displays the string description of the data store ‘eNeu’
 N = TT.ReadEventsSimple('eNeu');

evtype = TT.ParseEvInfoV(0, 0, 2);

 TT.EvTypeToString(evtype)

DFromToString
Description: Converts a data format code to a descriptive string.

Prototype: Function DFromToString(DFormCode As Long) As String

Arguments: DFormCode Data format code stored in event header

Data Format Input Returns

Float 0 "Float"

Long 1 "Long"

Short 2 "Short"

Byte 3 "Byte"

Double 4 "Double"
Returns: a string description for the data format (see above)

Sample Code: This code displays the data format of the data store ‘eNeu’
 N = TT.ReadEventsSimple('eNeu');

 d = TT.ParseEvInfoV(0, 0, 8);

 TT.DFormToString(d)

ResetGlobals
Description: This call will reset all the global parameters to their default values. See list of

default values of global parameters.

TTankX

55

Prototype: Function ResetGlobals()

Related Calls: SetGlobals, SetGlobalStringV , GetGlobalV, SetGlobalV, GetGlobalStringV,
SetGlobals

SetGlobalV
Description: This call will set a global parameter to the value specified. See list of global

parameters.

Prototype: Function SetGlobalV(GlobalName As String, GlobalValue
As Long) As Long

Arguments: GlobalName global parameter name

 GlobalValue desired value of the global parameter

Returns: 0 (fails), 1 (succeeds)

 + Tip ... If 0 is returned, the name of the global parameter might have been
entered incorrectly.

Sample Code: This code sample sets new values for the global parameters, Channel and T2,
then returns the number of events.

 TT.SetGlobalV('Channel', 1)

 TT.SetGlobalV('T2', 10)

 events = TT.ReadEventsSimple('Snip')

Related Calls: GetGlobalV, SetGlobalStringV, SetGlobals, ResetGlobals

Note: Python users, see page 59.

SetGlobalStringV
Description: This call will set the string value of the specified string global parameter. Note

that this call supports only string parameters ‘FillItem’ and ‘Options’.

Prototype: Function SetGlobalStringV(GlobalName As String,
GlobalValue As String) As Long

Arguments: GlobalName global parameter name

 GlobalValue desired value of the global parameter

Returns: 0 (fails), 1 (succeeds)

 If 0 is returned, the name of the global parameter might have been entered
incorrectly.

Sample Code: This code sample sets the global parameter, Options, to FILTERED.
 TT.SetGlobalStringV('Options','FILTERED')

Related Calls: GetGlobalV, SetGlobalV, GetGlobalStringV, SetGlobals, ResetGlobals

Note: Python users, see page 59.

SetGlobals
Description: This call allows the user to set multiple global parameters of different types in a

single call. Each global parameter specified is separated by a semicolon and uses
an equal sign to assign its desired value.

OpenDeveloper Reference Manual

56

Prototype: Function SetGlobals(Settings As String) As Long

Arguments: Settings multiple parameter settings specified as a string

Returns: 0 (fails), 1 (succeeds)

Sample Code: TT.SetGlobals('Options=FILTERED; Channel=1; T2=10');

Related Calls: ResetGlobals, SetGlobalStringV, GetGlobalV, SetGlobalV, GetGlobalStringV,
ResetGlobals

Note: Python users, see page 59.

TTankX

57

C++ Methods
The ‘V’ methods that accept string inputs have counterparts that accept integers in place of those
strings. These methods are used with the C++ programming language.

ReadEvents
Description: Same as ReadEventsV except the EventCode and Options parameters are

specified as longs. See ReadEventsV, pg 28, for more information.

C Prototype: long ReadEvents(long MaxRet, long TankCode, long
Channel, long SortCode, double T1, double T2, long
Options);

Arguments: TankCode name of event in long format

 Options See Options in the Global Parameters section, page24, for
more information. The table below converts the Options string
to its corresponding hex value for this function. Options can
be combined by summing their integer values together

Options String ReadEvents Options
Input Hex

"ALL" 0x0000

“NEW” 0x0001

“SAME” 0x0002

“JUSTTIMES” 0x0100

“DOUBLES” 0x0200

“NODATA” 0x0400

“FILTERED” 0x1000

“ORDERED” 0x2000

ParseEv
Description: ParseEv retrieves waveform and event information about one record and returns

the index for the next record.

C Prototype: long ParseEv(long RecIndex, double* TimeStamp, long*
Channel, long* SortCode, long* Npts, float* pData);

Arguments: RecIndex index of record to retrieve (zero based)

 TimeStamp pointer for time stamp, 0 to note return timestamp

 Channel pointer for channel number, 0 to not return channel

 SortCode pointer for sort code value, 0 to not return sort code

 If using a SortCode generated by OpenSorter, see Known
Anomalies, page 79.

OpenDeveloper Reference Manual

58

 Npts pointer for the number of points in the pData array, 0 to not
return data

 pData pointer to a memory buffer to store the raw waveform

Returns: next index value, 0 if no more data, -1 if call failed

Related Calls: ReadEvents , ReadEventsV

QryEpocAt
Description: QryEpocAt works the same as QryEpocAtV except that is requires TankCode is

specified as a long and the requested item is returned as a long.

C Prototype: long QryEpocAt(long TankCode, double rTime, long
ReqItem, double* RetVal);

Arguments: TankCode epoch event, a four byte number

 rTime requested time, time at which active epoch is to be found

 ReqItem requested item type

 RetVal pointer to the location that stores the returned value

Returns: 0 (fails), 1 (succeeds)

Related Calls: CreateEpocIndexing

SetEpocTimeFilter
Description: SetEpocTimeFilter is identical to SetEpocTimeFilterV but requires the epoc

event code (long integer) as input instead of the epoc name as string.

C Prototype: long SetEpocTimeFilter(long EpocCode, double Offset,
double Dur);

Arguments: EpocCode event code of an epoch event

SetRefEpoc
Description: This call will set a reference epoch, such that all events subsequently returned

will have time stamps relative to the onset of the specified epoch. This is
particularly useful for plotting histograms. This method can be called by the
user, but it is also called automatically by the SetEpocTimeFilter method.

 When using SetEpocTimeFilter, the AutoRefEpoch global parameter (enabled
by default) will cause the epoch by SetRefEpoc to be overwritten by the epoch
set by SetEpocTimeFilter. To prevent this, set AutoRefEpoch to 0. Also note
that, if a negative offset has been specified in the SetEpocTimeFilter arguments,
it is possible to get a negative time stamp value.

 These calls are typically used before ReadEvents and do not affect the results of
the GetValidTimeRanges or GetEpocsEx calls.

C Prototype: long SetRefEpoc(long EpocCode);

Arguments: EpocCode event code of an epoch event

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample sets a reference epoch using the epoch's numeric code.
 a = TT.SetRefEpoc(4367)

TTankX

59

Related Calls: SetEpocTimeFilter

SetFilter
Description: SetFilter functions the same as SetFilterWithDesc except that the filter is

specified numerically rather than with a string. Input values are used to set
boundaries for filtering out epoch events.

 Multiple calls to SetFilter are cumulative and are logically ORed if applied to
the same epoch or logically ANDed if applied across different epochs. To reset
all filters make a call to ResetFilters.

C Prototype: long SetFilter(long TankCode, long TestCode, double
V1, double V2);

Arguments: TankCode epoch event code as 4 bytes long, determined using
StringToEvCode or GetEventCodes

 TestCode a single value that sets the criteria value for the filter

 letters shown correspond to their ASCII value

 associated numbers for use with MATLAB are:

 'E' 69 equal to

 'N' 78 not equal to

 'G' 71 greater than or equal

 'L' 76 less than or equal

 'A' 65 above, greater than

 'B' 66 below, less than

 'I' 73 include, between these values

 'O' 79 outside of those values

 V1 primary value used in an equation

 V2 secondary value used an equation

 The V2 value is used with "I" and "O" to define the range of
the filter.

Returns: number of epoch blocks removed by filtering

Sample Code: This code sample sets a filter for FREQ = 2000.
 TT.SelectBlock('Block-45')

 TT.CreateEpocIndexing

 ecode = TT.StringToEvCode('FREQ')

 TT.SetFilter(ecode, 69, 2000, 0)

Related Calls: GetEventCode, GetEpocCode, CreateEpocIndexing

Special Note for Python Users
Functions with a ‘V’ suffix that accept string values as inputs will not work with Python because
the string data type is poorly defined. The affected methods have equivalent methods suffixed
with a ‘B’ that are identical to their ‘V’ counterparts but allow input of the BSTR String type.

OpenDeveloper Reference Manual

60

These functions are compatible with languages that have tighter data type restrictions such as
Python.

The functions are:

 GetGlobalStringB

 GetGlobalB

 SetGlobalStringB

 SetGlobalB

 SetGlobalsB

 ReadWavesOnTimeRangeB

 SetEpocTimeFilterB

 SetRefEpocB

61

TTankInterfaces

About the TTankInterfaces
TTankInterfaces includes four graphical user interfaces (GUIs) for displaying, modifying, and
accessing data tanks through TDT's server applications.

ServerSelect
This interface allows users to modify and access server names.

TankSelect
This interface allows users to modify and access tank names.

BlockSelect
This interface allows users to access and modify blocks within an active tank.

EventSelect
This interface allows users to access event properties.

The operations of these components are linked through their event handlers. Developers can
coordinate events fired by individual components to develop interactive applications similar to
TDT's OpenScope, a client application in the OpenEx software suite. An example program
developed in Visual Basic is included to provide an illustration of how these components are used
together.

TTankInterfaces Example
This example is installed with OpenEx Software Suite and can be found in the following path:

C:\TDT\OpenEx\Examples\TTankX_Example\Matlab\TTankInterfacesExample\

About the Example

This example demonstrates a simple sequence of connecting the different TTankInterfaces
ActiveX controls together so that a change in one interface is passed through all the interfaces. For
example, if you change the active tank it updates the block selection window. Selection of a
particular block lists the events stored in that block.

The example GUI interface was designed using Matlab’s GUI editor. This program runs in Matlab
7 or greater. It uses the four TTankInterfaces: ServerSelect, TankSelect, BlockSelect, and
EventSelect.

Note: Matlab contains its own naming scheme for COM objects, thus the ServerSelect,
TankSelect, BlockSelect, and EventSelect COM objects are named activex1, activex2, activex3,
and activex4 respectively.

The program responds to the following four events: the server is changed, the tank is changed, the
block is changed, and/or an event is changed. A RunAnalysis button is included to illustrate how
to add TTank function calls to the GUI interface. When pressed, the button calls the

OpenDeveloper Reference Manual

62

ReadEventsSimple function which returns the total number of events for all channels of the
currently selected Block and EventID.

Several files are provided for TTankInterfacesExample:

Main.m - This file creates the GUI interface. Run this file in Matlab to run the example.

RunAnalysis.m - This file provides the function call for the RunAnalysis button in the GUI
interface.

TTankInterfacesExample.fig - This file defines the GUI interface and contains the COM objects.

Note: The following files are auto generated from the TTankInterfacesDemo.fig file

TTankInterfacesExample.m - Contains the event listener functions for actions that occur in the
GUI interface.

TTankInterfacesExample_activex1 - Describes the TTankInterfaces.ServerSelect COM object.

TTankInterfacesExample_activex2 - Describes the TTankInterfaces.TankSelect COM object.

TTankInterfacesExample_activex3 - Describes the TTankInterfaces.BlockSelect COM object.

TTankInterfacesExample_activex4 - Describes the TTankInterfaces.EventSelect COM object.

ServerChanged

When the ServerChanged event occurs the function activex1_ServerChanged is called. This
function then calls functions associated with TankSelect, the next interface in the group.
TankSelect calls the UseServer function which returns all the tanks on that server and refreshes the
TankSelect screen. The code is shown below.
function activex1_ServerChanged(hObject, eventdata, handles)

% Process Server selection info for TankSelect

handles.activex2.UseServer = eventdata.NewServer;

handles.activex2.Refresh;

% Update global variable CurrentServer

global CurrentServer;

CurrentServer = eventdata.NewServer;

TankChanged

When the TankChanged event occurs, the function activex2_TankChanged is run. This function
then calls functions associated with BlockSelect, the next interface in the group. BlockSelect calls
the following functions: UseServer, UseTank, and Refresh. These functions return all the blocks
on that tank and refresh the BlockSelect screen. In addition, if the current tank is changed, the
currently selected block and event are deselected. The code is shown below.

TTankInterfaces

63

function activex2_TankChanged(hObject, eventdata, handles)

% Process Server and Tank selection info for BlockSelect

handles.activex3.UseServer = eventdata.ActServer;

% Deselects the previously selected Block if the current Tank is

% changed

handles.activex3.ActiveBlock = '';

handles.activex3.Refresh;

% Deselects the previously selected Event and clears the event

% list if the current Tank is changed

handles.activex4.UseBlock = '';

handles.activex4.ActiveEvent = '';

handles.activex4.Refresh;

% Update global variable CurrentTank

global CurrentTank;

CurrentTank = eventdata.ActTank;

BlockChanged

When the BlockChanged event occurs, the function activex3_BlockChanged is run. This function
then calls functions associated with EventSelect, the next interface in the group. EventSelect calls
the following functions: UseServer, UseTank, UseBlock, and Refresh. These functions return all
the events in that block and refresh the EventSelect interface. In addition, if the current block is
changed, the currently selected event is deselected. The code is shown below.
function activex3_BlockChanged(hObject, eventdata, handles)

% Process Server, Tank, and Block selection info for EventSelect

handles.activex4.UseServer = eventdata.ActServer;

handles.activex4.UseTank = eventdata.ActTank;

handles.activex4.UseBlock = eventdata.ActBlock;

% Deselects the previously selected Event if the current Block is

% changed

handles.activex4.ActiveEvent = '';

handles.activex4.Refresh;

OpenDeveloper Reference Manual

64

ActEventChanged

When the ActEventChange event occurs the function activex4_ActEventChanged is run. This
function then stores the selected Event in the global variable CurrentEvent before calling the
refresh function. Once an event has been selected, the RunAnalysis button can be used to return
the total number of events from the currently selected Block. The code is shown below.
function activex4_ActEventChanged(hObject, eventdata, handles)

% Process Event Selection and refresh

global CurrentEvent;

CurrentEvent = eventdata.NewActEvent;

handles.activex4.Refresh;

RunAnalysis

When the RunAnalysis button is pressed, the program RunAnalysis.m is called. This program
reads the block data into a MATLAB structure using TDT2mat.m.

65

TDevAcc

About TDevAcc
TDevAcc is a series of methods for accessing and controlling hardware through an
OpenWorkbench server. TDevAcc can be used to develop client applications similar to TDT's
OpenController application.

TDevAcc provides access to System 3 real-time processing devices during an experiment. Client
applications developed using TDevAcc can control circuit parameters, retrieve information from
device buffers, and read device tags in real-time. Keep in mind that this unprotected access must
be used carefully. An entire OpenEx experiment could 'crash' if a flawed attempt to access tags is
executed. TDevAcc supports a modified tag access protocol similar to the one used by the RPco.X
interface. Developers should be very familiar with the RPco.X interface, and RPvdsEx circuit
design and use, before attempting to use TDevAcc.

TDevAcc uses targets to implement real-time control. When OpenWorkbench is running, client
applications developed using TDevAcc can call the OpenWorkbench server and access
OpenWorkbench targets. OpenWorkbench targets include the device name, or the name assigned
to a hardware device within OpenWorkbench, and the parameter tag, or the name of a tag created
in the circuit in RPvdsEx. The device name and parameter tag are used together and are separated
by a period to create a target, such as Amp1.LPFreq. The target identifies and provides access to a
specific parameter tag within a circuit running on a specific real-time processing device.

Before using the TDevAcc methods, users should have a strong understanding of RPvdsEx
circuits and OpenEx methodology along with a background in programming with TDT ActiveX
controls.

Users should be mindful of using good 'closed loop' access when working with TDevAcc. This
means always releasing your servers.

A typical server access session for a client consists of five main steps:

1. Run the OpenWorkbench application.

2. Load an OpenWorkbench configuration file.

3. Call ConnectServer -- Called to connect to the OpenWorkbench server. The connection is
terminated with CloseConnection.

4. Perform any number of operations with the OpenWorkbench server.

5. Call CloseConnection -- Called to release the OpenWorkbench server.

A standard MATLAB routine might look like the routine below:
DA = actxcontrol('TDevAcc.X')

DA.ConnectServer('Local')

 %Your code

DA.CloseConnection

OpenDeveloper Reference Manual

66

Organization of TDevAcc Methods
TDevAcc methods can be divided into three basic groups:

 Setup and Control -- The methods in this group are used to setup access to
OpenWorkbench and control OpenWorkbench system modes.

 Hardware Data Access -- The methods in this group are used to read or write data to
hardware device components.

 Hardware Information Retrieval -- The methods in this group are used to access
information, such as status or sample frequency, about a device.

Setup and Control TDevAcc X

ConnectServer
Description: ConnectServer initiates a connection with an OpenWorkbench server. The

connection adds a client to the server. A project has to be loaded in order for
Connect Server to return 1 and it will fail if OpenProject is not loaded or if the
loaded OpenProject does not have a valid Workbench configuration file.

Prototype: Function ConnectServer(ServerName As String) As Long

Arguments:

String ServerName name of the server, 'Local' is most common

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample connects to the Local server.
 DA = actxcontrol('TDevAcc.X')

 DA.ConnectServer('Local')

CheckServerConnection
Description: CheckServerConnection verifies if OpenWorkbench is loaded and if the

OpenWorkbench server has loaded a circuit file to the OpenWorkbench
application. The method will return a 1 if OpenWorkbench is correctly loaded
and configured and in Standby, Preview, or Record mode. It returns 0 if
OpenWorkbench is not loaded, configured, or if OpenWorkbench is in Idle
mode.

Prototype: Function CheckServerConnection() As Long

Returns: 0 (Idle), 1 (Standby, Preview, or Record)

Sample Code: This code sample checks the connection to the server and returns a message if
the client is not connected to the server.

 DA.ConnectServer('Local')

 if DA.CheckServerConnection==0

 display('Client application not connect to server')

 end

67

GetSysMode
Description: GetSysMode (get system mode) returns the state of OpenWorkbench as a long.

This call can be used in conjunction with SetSysMode to control the operational
mode of your entire OpenEx system. The various modes of OpenWorkbench,
including Idle, Standby, Preview, and Record; are described in the OpenEx
Manual.

Prototype: Function GetSysMode() As Long

Returns: 0 (Idle), 1 (Standby), 2 (Preview), 3 (Record)

Sample Code: This code sample opens a connection to the OpenWorkbench server. If the
OpenWorkbench mode is Record (3) the routine is run.

 if DA.ConnectServer('Local')==1 then

 if DA.GetSysMode==3 then

 %Start Routine

 end

 end

SetSysMode
Description: SetSysMode (set system mode) sets the state of OpenWorkbench through the

system mode. The possible modes include: Idle, Standby, Preview, and Record.

Prototype: Function SetSysMode(NewMode As Long) As Long

Arguments: NewMode sets the mode of the system: 0 (Idle), 1 (Standby), 2 (Preview),
3 (Record)

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample opens a connection to the OpenWorkbench server. If the
OpenWorkbench mode is not Record (3) mode, SetSysMode places the
OpenWorkbench in Record (3) mode.

 if DA.ConnectServer('Local')==1

 if DA.GetSysMode ~= 3

 DA.SetSysMode(3)

 end

 end

SetTankName
Description: SetTankName sets the active tank if OpenWorkbench is loaded and in Idle or

Standby mode. If you are setting the value to a registered tank, you need only
provide the tank name for the argument TankName. Otherwise, provide the
entire path to the tank.

Prototype: Function SetTankName(TankName as String) As Long

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample opens a connection to the OpenWorkbench server and sets the
active tank to the registered tank DemoTank2.

OpenDeveloper Reference Manual

68

 DA.ConnectServer('Local')

 DA.SetTankName('DemoTank2')

 Note: to use an unregistered tank, use the absolute path to the tank
 DA.SetTankName('C:\TDT\OpenEx\Tanks\DemoTank2')

GetTankName
Description: GetTankName returns name of the active tank if OpenWorkbench is loaded. If

the tank has not yet been specified in OpenWorkbench, GetTankName returns
the null string.

Prototype: Function GetTankName() As String

Returns: name of the active tank

Sample Code: This code sample opens a connection to the OpenWorkbench server and gets the
name of the active tank.

 DA.ConnectServer('Local')

 DA.GetTankName

CloseConnection
Description: CloseConnection closes the connection to the OpenWorkbench server.

Prototype: Function CloseConnection()

Sample Code: This code sample opens a connection to the OpenWorkbench server then closes
it after the client application is finished.

 DA.ConnectServer('Local')

 % Your Code

 DA.CloseConnection

Hardware Data Access TDevAcc X

SetTargetVal
Description: SetTargetVal (set target value) sends a value to a target and is used to modify a

parameter tag within an RCO circuit. It can also be used to set the attenuation
value of a PA5. See About TDevAcc, page 65 for more information on targets.

Prototype: Function SetTargetVal(Target As String, Val As
Double) As Long

Arguments: Target target name in DevName.TagName format

 Val value to assign to the target

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code sample sets the value of target Acq1.Thresh to 5.
 DA.SetTargetVal('Acq1.Thresh',5)

This code sample sets the attenuation of target PA5_1 to 20.
TD.SetTargetVal('PA5_1.Atten', 20)

69

GetTargetVal
Description: GetTargetVal retrieves a target value and is used to read a parameter tag within

an RCO circuit or the attenuation value of a PA5. See About TDevAcc, page 65
for more information on targets.

 Note: this function will return 0.0 if the target specified is invalid or cannot be
read. You may want to validate the target using GetTargetType before accessing
it with GetTargetVal.

Prototype: Function GetTargetVal(Target As String) As Double

Arguments: Target target name in DevName.TagName format

Returns: value read from the target

Sample Code: This code sample returns the cycle usage of device Acq1.
 DA.GetTargetVal('Acq1.zCycUse')

This code sample returns the attenuation value of the PA5_1.
TD.GetTargetVal('PA5_1.Atten')

WriteTarget
Description: WriteTarget is used to send data to a memory buffer located on a processor

device.

 WriteTarget functions similarly to WriteTargetVEX but is designed for Legacy
users. New users should refer to the WriteTargetVEX function.

 Note: The floating point data array pData must be cast as a single for use with
Matlab.

Prototype: Function WriteTarget(Target As String, nOS As Long,
nWords As Long, pData As Single) As Long

Arguments:

String Target name of parameter tag

Long nOS offset within buffer to begin write, given in 32bit words

Long nWords number of 32-bit words to write

Float FAR* pData floating point array holding data to load to RPx memory

Returns: 0 (fails), 1 (succeeds)

WriteTargetV
Description: WriteTargetV is used to send data to a memory buffer located on a processor

device. WriteTargetV functions similarly to WriteTargetVEX but is designed
for Legacy users. New users should refer to the WriteTargetVEX function.

 Note: The Variant data array vData must be cast as a single for use with Matlab.

Prototype: Function WriteTargetV(Target As String, nOS As Long,
(vData As Variant) As Single) As Long

Arguments:

String Target name of parameter tag

Long nOS number of points to offset in buffer before starting write

OpenDeveloper Reference Manual

70

Variant vData data array with the samples (this array must be cast as singles)

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code writes the matrix coefs to the target Acq1.Filter1Coef
 coefs = [0.206572 0.413144 0.206572 -0.369527

0.195816];

 coefs = single(coefs);

 coefs = DA.WriteTargetV('Acq1.Filter1Coef',0,coefs)

WriteTargetVEX
Description: WriteTargetVEX is used to send data to a memory buffer located on a processor

device. The target is a parameter tag in a circuit running on a device and
follows the form: DeviceName.ParameterTag. The DeviceName is the name
given to the device by OpenWorkbench.

 WriteTargetVEX is for use with programming languages that use dynamic data
typing, such as Python, but is also compatible with Matlab.

 Note: Unlike WriteTarget and WriteTargetV, WriteTargetVEX does not require
the vData array to be cast as a single.

Prototype: Function WriteTargetVEX(Target As String, nOS As
long, DstType As String, vData As Variant) As Long

Arguments: Target name of parameter tag

 nOS number of points to offset in buffer before starting write

 DstType format for storing data

float (32-bit) long (32-bit) short (16-bit) byte (8-bit)

‘F32’ ‘I32’ ‘I16’ ‘I8’

 vData any data array

Returns: 0 (fails), 1 (succeeds)

Sample Code: This code writes the matrix coefs to the target Acq1.Filter1Coef.
 DA = actxcontrol('TDevAcc.X')

 DA.ConnectServer('Local')

 coefs = [0.206572 0.413144 0.206572 -0.369527
0.195816];

 DA.WriteTargetVEX('Acq1.Filter1Coef',0,'F32',coefs)

ZeroTarget
Description: Sets a parameter tag value to zero. When the parameter tag points to a memory

buffer, all values in the buffer are set to zero.

Prototype: Function ZeroTarget(Target As String) As Void

Arguments: Target name of parameter tag

Sample Code: This code resets a stimulus buffer using tag Stim.StimBuf.
 DA = actxcontrol('TDevAcc.X')

 DA.ConnectServer('Local')

71

 DA.ZeroTarget('Stim.StimBuf')

ReadTarget
Description: ReadTarget is used to read data from a target to a buffer on the PC.

 ReadTarget functions similarly to ReadTargetVEX but is designed for Legacy
users. New users should refer to the ReadTargetVEX function.

Tech Notes: ReadTargetV is used with the following components that have a data buffer:
RamBuffer, SerialBuffer, AverageBuffer, LongDelay, LongDynDelay,
ShortDelay, ShortDynDelay, Biquad, IIR,FIR, HrtfFir.

Prototype: Function ReadTarget(Target As String, nOS As Long,
nWords As Long, pBuf As Single) As Long

Arguments:

String Target name of parameter tag

Long nOS number of points to offset in buffer before starting read

Long nWords number of 32-bit words to read (samples)

Float pBUF pointer to the buffer for storing the data

Returns: 0 (fails), 1 (succeeds)

ReadTargetV
Description: ReadTargetV is used to read data from a target to a buffer on the PC.

 ReadTargetV functions similarly to ReadTargetVEX but is designed for Legacy
users. New users should refer to the ReadTargetVEX function.

 Note: The Variant data array returned is of type Single (F32).

Tech Notes: ReadTagV is used with the following components that have a data buffer:
RamBuffer, Serial Buffer, Average Buffer, LongDelay, LongDynDelay,
ShortDelay, ShortDynDelay, Biquad, IIR,FIR, HrtfFir.

Prototype: Function ReadTargetV(Target As String, nOS As Long,
nWords As Long) As Single

Arguments:

String Target name of parameter tag

Long nOS number of points to offset in buffer before starting read

Long i number of 32-bit words to read (samples)

Returns: array of type Single, or -1 or NaN if fails

ReadTargetVEX
Description: ReadTargetVEX is used to read data from a target to a buffer on the PC.

 ReadTargetVEX reads data from a parameter tag (Target) in a circuit running on
a device that follows the form: DeviceName.ParameterTag. The DeviceName is
the name given to the device by OpenWorkbench. The user must specify the
source type (Srctype) of the parameter tag's data (F32, I32, I16, or 8-bit Integer)
and the number of 32 bit words to read. It then converts it to one of five data
formats (Double, Floating Point, Word, Integer, or 8-bit Integer) and stores it on
a PC buffer.

OpenDeveloper Reference Manual

72

 If the data being read is shuffled, nWords is equivalent to the number of
Samples in the Serial Buffer. If the data is compressed, nWords is equal to the
number of points saved.

 For example, if the data is compressed two-folded, 500 points of 1000 samples
of the Serial Buffer have been read; nWords should be set to 500. For I8 format,
a compression of 4, the number of points read from the buffer is 250 and
nWords should be set to 250.

 Note: ReadTargetVEX has been added to TDevAcc for use with programming
languages that use dynamic data typing, such as Python, but is also compatible
with Matlab.

Prototype: Function ReadTargetVEX(Target As String, nOS As long,
nWords As long, SrcType As String, DstType As String)
As Variant

Arguments: Target name of parameter tag

 nOS number of points to offset in buffer before starting read

 nWords number of 32-bit words to read (samples)

 Srctype storage format type of data being read. Below is a list of the
storage types

float (32-bit) long (32-bit) short (16-bit) byte (8-bit)

‘F32’ ‘I32’ ‘I16’ ‘I8’

 DstType format for storing data

Double (64-bit) float (32-bit) long (32-bit) short (16-bit) byte (8-bit)

‘F64’ ‘F32’ ‘I32’ ‘I16’ ‘I8’

Returns: array of the buffer contents, -1 or NaN if call failed

Sample Code: This sample reads five 32-bit words of data in single format from the parameter
tag Acq1.Filter1Coef and returns it in double format.

 DA = actxcontrol('TDevAcc.X')

 DA.ConnectServer('Local')

 coefs = DA.ReadTargetVEX('Acq1.Filter1Coef',0, 5,
'F32', 'F64')

Hardware Information Retrieval TDevAcc X

GetDeviceName
Description: GetDeviceName returns the name of the devices that OpenWorkbench is

connected to. A null string is returned if the there is no device at that index. To
get the first device name, use an index of 0. Then increase the index until a null
string is returned.

Prototype: Function GetDeviceName(Index As Long) As String

Arguments: Index device index (zero based)

Returns: the device name at the specified index, or null string if no device at that index

73

GetDeviceRCO
Description: GetDeviceRCO returns the full path name of the RCO file loaded to the

specified device. A null string is returned if the device name is invalid or if no
RCO file is loaded.

Prototype: Function GetDeviceRCO(DeviceName As String) As String

Arguments: DeviceName name of the device given by OpenWorkbench, e.g. ‘Amp1’

Returns: the RCO file name and full path

GetDeviceSF
Description: GetDeviceSF returns the exact sampling frequency of a device connected to the

OpenWorkbench server.

Prototype: Function GetDeviceSF(DeviceName As String) As Float

Arguments: DeviceName name of the device given by OpenWorkbench, e.g. ‘Amp1’

Returns: sampling frequency of the hardware device

GetDeviceStatus
Description: GetDeviceStatus returns the status of a device connected to the OpenWorkbench

server. The first three bits of the status are used by all programmable devices to
indicate the following: a connection to the PC, a loaded RCX file, and a running
circuit.

 The target for GetDeviceStatus is the name of the hardware device. The device
name is the name given to the device on the corresponding OpenWorkbench
property sheet, for example, Amp1.

Prototype: Function GetDeviceStatus(Target As String) As Long

Arguments: Target name of the target (OpenWorkbench Device name)

Returns: connection status, first four bits check the status of the device

A bit-code value is set based on the status of the device.

 All devices:

Bit Value (Enabled) Status
0 1 Connected

1 2 Circuit loaded

2 4 Circuit running

 Using GetDeviceStatus simplifies the error checking routines (see below).

 For best results, use bit-wise operations (0/1). Bits remain constant. Long values
change as new bits are added to GetDeviceStatus().

 If a circuit has previously been loaded to the device it will run when LoadCof
fails, and the bit status of the device will read 0110(6) or 0111.

 RA16BA:

 The RA16BA has additional status values. Bit 4 indicates clipping is occurring
on one or more channels. Bit 5 indicates that clipping has occurred since the last
time GetDeviceStatus was called. Once GetDeviceStatus is called bit 5 is reset.

OpenDeveloper Reference Manual

74

 Note: When checking the status of the RA16BA, ensure that a preamplifier is
properly connected and turned on. Connection status (Bit 0) will always return a
0 when a preamplifier is not properly connected. Bit 5 (amplifier clipped since
last call) is reset after GetDeviceStatus is called.

Bit Value (Enabled) Status
0 1 Connected

1 2 Circuit loaded

2 4 Circuit running

3 8 Battery status (RL2, RA16PA)

4 16 Clipping on one or more channels

5 32 Clipping occurred since last
GetDeviceStatus

 RV8:

Bit Value (Enabled) Status
0 1 Connected

1 2 Circuit loaded

2 4 Circuit running

3 8 N/A

4 16 N/A

5 32 N/A

6 64 System armed

7 128 Circuit running

8 256 Trigger enabled

9 512 Auto-clear DAC outs

10 1024 Tick out

11 2048 Clock out

12 4096 zTrigA

13 8192 zTrigB

14 16384 External trigger

15 32768 Multiple trigger

GetDeviceType
Description: GetDeviceType returns the type of device as a long integer. The target is the

name of the hardware device as it appears in OpenWorkbench.

Prototype: Function GetDeviceType(String Target) As Long

Arguments: Target name of the target device in OpenWorkbench

Returns: a long that returns the DeviceType as a long integer (see table below)

75

Tech Notes: Device Type Value

 RP2 0

 RL2 1

 RA16 2

 RV8 3

 RM1 5

 RM2 6

 RX5 10

 RX6 11

 RX7 12

 RX8 13

 RZ2 15

 RZ5 18

 RZ6 19

GetNextTag
Description: GetNextTag (get next parameter tag) returns the name of the parameter tag of a

particular data type (such as integer or logical). The first call to the GetNextTag
method must have a number other than 0 for DoFirst. All subsequent calls can
pass the value 0 for DoFirst. The target for GetNextTag is the name of the
hardware device. The DeviceName is the name given to the device by
OpenWorkbench on the corresponding property sheet. Tags are indexed by
alphabetical order.

Prototype: Function GetNextTag(Target As String, ReqType As
Long, DoFirst As Long) As String

Arguments: Target name of target, form for target is DeviceName

 ReqType data type associated with the target (see GetTargetType)

 DoFirst The DoFirst parameter allows the user to specify whether to
return the first tag (DoFirst = value > 0) or the next successive
tag in the circuit (DoFirst = 0). If a zero is passed initially,
this method will return a null string, therefore, a nonzero value
must be passed initially.

Returns: returns the next parameter tag of that data type in the sequence

 Data Type Value Ascii Map

 Data (buffer) 68 "D"

 Integer 73 "I"

 Logical 76 "L"

 Coefficients 80 "P"

 Float 83 "S"

Sample Code: Retrieves all the parameter tags associated with the buffer data type.
 DA = actxcontrol('TDevAcc.X');

OpenDeveloper Reference Manual

76

 DA.ConnectServer('Local');

 % Must specify a nonzero index for the first tag

 target= DA.GetNextTag('Acq1',68,1)

 for i=0:10 % Search for up to 10 tags

 target=DA.GetNextTag('Acq1',68,0);

 % Search through tags until no more are found and
display while ~strcmp(target,)

target=DA.GetNextTag('Acq1',68,0)

end

GetTargetType
Description: GetTargetType returns the data type of the specified target. The target is a

parameter tag in a circuit running on a device and follows the form:
DeviceName.ParameterTag. The DeviceName is the name given to the device
by OpenWorkbench on the corresponding property sheet. GetTargetType returns
0 if the target is invalid.

Prototype: Function GetTargetType(Target As String) As Long

Arguments: Target name of target, in the form DeviceName.ParameterTag

Returns: long that maps to an ASCII character

 Data Type Value Ascii Char

 Data buffer / Delay line (DM) 68 "D"

 Integer 73 "I"

 Logical (1 or 0) 76 "L"

 Coefficient buffer (PM) 80 "P"

 Float (Single) 83 "S"

 Undefined (e.g. latch output) 65 "A"

GetTargetSize
Description: This function returns the size of a DM or PM buffer or scalar tag in 32-bit

words. The tag is specified using the standard target naming convention and will
return either the allocated size of the buffer or a one if the target is a scalar. A
zero is returned for an invalid target.

Prototype: Function GetTargetSize(Target As String) As Long

Arguments: Target name of target, in the form DeviceName.ParameterTag

Returns: Size of the buffer, 1 if tag is connected to a scalar value, 0 on error

77

Examples
The example files below are installed with OpenEx Suite; however, the most up to date versions of
examples are available in a downloadable ZIP file on the TDT website:
http://www.tdt.com/files/examples/OpenDeveloperExamples.zip.

TDT recommends starting with the TDT2mat.m and SEV2mat.m examples for extracting
all block data into a matlab structure.

Recommended Examples

Files: OpenEx\Examples\TTankX_Example\Matlab\TDT2mat.m or TDT2mat.m

Overview: Demonstrates steps to extract Tank data into a Matlab structure.

Files: OpenEx\Examples\TTankX_Example\Matlab\SEV2mat.m or SEV2mat.m

Overview: Demonstrates steps to extract SEV data into a struct format.

Files: OpenEx\Examples\TTankX_Example\Matlab\TDTfilter.m or TDTfilter.m

Overview: Demonstrates steps to filter Tank Data.

Files: OpenEx\Examples\TTankX_Example\Matlab\ Raster_PSTH.m or Raster_PSTH.m

Overview: Demonstrates steps to display data as a PSTH raster plot.

Files: OpenEx\Examples\TTankX_Example\Matlab\rms.m or rms.m

Overview: Calculates RMS.

Files: OpenEx\Examples\TTankX_Example\Matlab\TDTdigitalfilter.m or TDTdigitalfilter.m

Overview: Demonstrates steps to apply a digital filter to streaming data.

Files: OpenEx\Examples\TTankX_Example\Matlab\TDTfft.m or TDTfft.m

Overview: Demonstrate steps to perform a frequency analysis of a data stream.

Legacy Examples

File: OpenEx\Examples\TTankX_Example\Matlab\TTankInterfaces Example\Main.m

Overview: Demonstrates the TTankInterfaces (ServerSelect, TankSelect, BlockSelect, and
EventSelect). A button is included which returns the total number of events for the currently
selected event.

Note: This example must be run using Matlab 7 or greater.

File: OpenEx\Examples\TTankX_Example\Matlab\Example1.m or Example1.m

Overview: Demonstrates how data can be extracted from a tank and parsed.

File: OpenEx\Examples\TTankX_Example\Matlab\Example2.m or Example2.m

http://www.tdt.com/files/examples/OpenDeveloperExamples.zip

OpenDeveloper Reference Manual

78

Overview: Demonstrates how to extract filtered data from the tank. Data is filtered based on
epoch events then events are extracted and parsed for later analysis and display.

File: OpenEx\Examples\TTankX_Example\Matlab\FilterArray.m or FilterArray.m

Overview: Describes how to filter data from the OpenEx Tank.

Files: OpenEx\Examples\TTankX_Example\Matlab\InterSpikeInterval.m or InterSpikeInterval.m

Overview: Demonstrates how to access tank data and parse events then plot the inter-spike
intervals (ISI).

Files: OpenEx\Examples\TTankX_Example\Matlab\WaveReconstruction.m or
WaveReconstruction.m

Overview: Demonstrates the steps used to reconstruct waveforms from events.

79

Known Anomalies
ReadEvents/ReadEventsV may miss some events if there is a long interval between events in a
block. Instead of trying to read all the events in the block at once (with start and stop time = 0),
loop through and read the events in steps of 100 second (or less) intervals. Sample Matlab code:
ts = [];

% assumes there will never be more than 1000 events in an
interval

maxevents = 1000;

% assumes a block will never be longer than 10000 seconds

maxtime = 10000;

% steps through block in 100 second intervals

steps = maxtime / 100;

for i = 1:steps

 % reads events in current 100 second interval

 events = ttank.ReadEventsV(maxevents, 'stor', 0, 0,

 ((i-1)*100), (i*100), 'ALL');

 if (events > 0)

 % if events were found, the timestamps are collected

 timestamps = ttank.ParseEvInfoV(0, events, 6);

 ts = cat(2, ts, timestamps(1,:));

 end

end

ts

Filtering methods, such as SetFilterArray, will always return 0 if a Store ID begins with any of the
following characters: "-", "=", "(", ")", "<", ">", "!", a space or any number 0 to 9. When the
TTank engine performs filtering of events in the Tank, the above characters will not be parsed
correctly, and the store name will not be decoded properly.

The Global parameter SortCode, or argument SortCode for methods such as ReadEvents and
ReadEventsV, cannot be used to define or condition the sort code of snippet events based on
SortId results generated in OpenSorter. Even after SetUseSortName is called, the TTank server
will use the default set of sort codes originally saved to the tank.

For example, the following Matlab code fails to cache Snip events with sort code 1, from the
OpenSorter generated sort set “Sort1” and uses the default “TankSort” sort set instead.

OpenDeveloper Reference Manual

80

SetSort = TT.SetUseSortName('Sort1')

SCode=1;

nEvents = TT.ReadEventsV(10000,'Snip',1,SCode,0.0,0.0,'All')

To use the alternate sort sets generated with OpenSorter, use the command SetFilterWithDescEx
to set the sort code condition you want. Then use commands like ReadEventsV with the SortCode
argument as 0, and the Options argument as ‘FILTERED’. The Matlab code below will work to
read Snip events of channel = 1and sort code = 1 from the sort set saved as “Sort1”.
SetSort1 = TT.SetUseSortName('Sort1');

TT.SetFilterWithDescEx('sort=1');

AllSort1 = TT.ReadEventsV(10000,'Snip',1,0,0.0,0.0,'FILTERED')

The most recent anomalies updates are available on the Web at http://www.tdt.com/technotes/.

http://www.tdt.com/technotes/

81

Index

B

BlockSelect .. 61

C

CheckServerConnection 66

CheckTank ... 27

CloseConnection 68

CloseTank .. 26

CodeToString ... 53

ConnectServer 26, 66

CreateEpocIndexing 32

D

DFromToString .. 54

E

EventSelect .. 61

G

GetCodeSpecs .. 48

GetDeviceRCO .. 72

GetDeviceSF ... 73

GetDeviceStatus .. 73

GetDeviceType .. 74

GetEnumServer ... 49

GetEnumTank .. 49

GetEpocCode ... 33

GetEpocsExV .. 34

GetEpocsV .. 33

GetError .. 50

GetEventCodes 50, 79

GetFilterTolerence 36

GetGlobalB ... 59

GetGlobalStringB 59

GetGlobalStringV 50, 59

GetGlobalV ... 51, 59

GetHotBlock .. 51

GetNextTag ... 75

GetSortName .. 51

GetStatus .. 52

GetSysMode ... 67

GetTargetSize ... 76

GetTargetType .. 76

GetTargetVal ... 68

GetValidTimeRangesV 10, 36

Global Parameters 7, 9, 23

O

OpenTank ... 26

OpenDeveloper Reference Manual

82

P

ParseEv ... 56

ParseEvInfoV 15, 30

ParseEvV ... 15, 29

Q

QryEpocAt ... 57

QryEpocAtV ... 37

QueryBlockName....................................... 49

R

ReadEvents ... 56, 79

ReadEventsSimple 15, 20, 28

ReadEventsV 28, 79

ReadTarget .. 70

ReadTargetV ... 71

ReadWavesOnTimeRangeB 59

ReadWavesOnTimeRangeV 10, 32, 59

ReadWavesV 10, 27

ReleaseServer ... 26

ResetFilters .. 10, 37

ResetGlobals ... 54

S

SelectBlock .. 27

ServerSelect .. 61

SetEpocTimeFilter 57

SetEpocTimeFilterB 59

SetEpocTimeFilterV 38, 59

SetFilter ... 58

SetFilterArray 15, 40

SetFilterTolerence..................................... 41

SetFilterWithDesc 39

SetFilterWithDescEx 10, 15, 40

SetGlobalB .. 59

SetGlobals 15, 55, 59

SetGlobalsB .. 59

SetGlobalStringB 59

SetGlobalStringV 10, 20, 55, 59

SetGlobalV 10, 20, 54, 59

SetRefEpoc ... 57

SetRefEpocV 42, 59

SetSysMode .. 67

SetTargetVal ... 68

SetUseSortName 45

SortID .. 45, 51

StringToEvCode 43, 44, 45, 52, 53

T

TankSelect .. 61

TDevAcc ... 65, 66

TTankInterfaces .. 61

W

WriteTarget ... 69

 Index

83

WriteTargetV .. 69

	Before You Begin:
	Requirements
	Organization of the Manual

	Overview
	TTankX
	Getting Started
	Basics: Working with Data
	Continuous Data
	Snippet Data
	Epoch Data
	Using Epochs as Filters
	Cleaning Up

	Examples
	Example: Reconstructing Waveforms from Events
	Example File
	Accessing the Tank
	Building an Epoch Index
	Using Global Parameters
	Filtering and Processing Data

	Example: Using Filter Arrays
	Example File
	Accessing the Tank
	Building an Epoch Index
	Filtering and Processing Data
	Reading Data
	Using Global Parameters
	Closing the Tank

	Example: Plotting Data in an Inter-Spike Interval Histogram
	Example File
	Accessing the Data Tank
	Using Global Parameters and Processing Data
	Creating an Inter-Spike Interval Histogram
	Closing the Tank

	Global Parameters
	Global Parameter Defaults
	AutoRefEpoch
	Channel
	FillItem
	FillValue
	MaxReturn
	Options
	RespectOffsetEpoc
	SortCode
	T1
	T2
	WavesMemLimit
	WaveSF
	WaveSFEvent

	Access Control TTank X
	ConnectServer
	ReleaseServer
	OpenTank
	CloseTank
	CheckTank
	SelectBlock

	Retrieving Records TTank X
	ReadWavesV
	ReadEventsSimple
	ReadEventsV
	ParseEvV
	ParseEvInfoV
	ReadWavesOnTimeRangeV

	Epochs and Filtering TTank X
	CreateEpocIndexing
	GetEpocCode
	GetEpocsV
	GetEpocsExV
	GetFilterTolerance
	GetValidTimeRangesV
	QryEpocAtV
	ResetFilters
	SetEpocTimeFilterV
	SetFilterWithDesc
	SetFilterWithDescEx
	SetFilterArray
	SetFilterTolerance
	SetRefEpocV

	Annotation Methods TTank X
	AppendNote
	GetNote
	ReplaceNote
	SetNoteIndex

	Sorting Methods TTank X
	GetEvTsqIdx
	SaveSortCodes
	GetSortCondition
	DeleteSortCode
	GetSortChanMap
	SetUseSortName

	Information Access TTank X
	CurBlockMemo
	CurBlockName
	CurBlockNotes
	CurBlockStartTime
	CurBlockStopTime
	FancyTime
	GetCodeSpecs
	GetEnumServer
	GetEnumTank
	QueryBlockName
	GetError
	GetEventCodes
	GetGlobalStringV
	GetGlobalV
	GetHotBlock
	GetSortName
	GetStatus
	GetTankItem

	Misc Utilities TTank X
	AddTank
	StringToEvCode
	CodeToString
	EvTypeToString
	DFromToString
	ResetGlobals
	SetGlobalV
	SetGlobalStringV
	SetGlobals

	C++ Methods
	ReadEvents
	ParseEv
	QryEpocAt
	SetEpocTimeFilter
	SetRefEpoc
	SetFilter

	Special Note for Python Users

	TTankInterfaces
	About the TTankInterfaces
	TTankInterfaces Example
	About the Example
	ServerChanged
	TankChanged
	BlockChanged
	ActEventChanged
	RunAnalysis

	TDevAcc
	About TDevAcc
	Organization of TDevAcc Methods
	Setup and Control TDevAcc X
	ConnectServer
	CheckServerConnection
	GetSysMode
	SetSysMode
	SetTankName
	GetTankName
	CloseConnection

	Hardware Data Access TDevAcc X
	SetTargetVal
	GetTargetVal
	WriteTarget
	WriteTargetV
	WriteTargetVEX
	ZeroTarget
	ReadTarget
	ReadTargetV
	ReadTargetVEX

	Hardware Information Retrieval TDevAcc X
	GetDeviceName
	GetDeviceRCO
	GetDeviceSF
	GetDeviceStatus
	GetDeviceType
	GetNextTag
	GetTargetType
	GetTargetSize

	Examples
	Recommended Examples
	Legacy Examples

	Known Anomalies
	Index

